Spelling suggestions: "subject:"dock fhysics"" "subject:"dock ephysics""
11 |
Characterizing two carbonate formations for CO₂-EOR and carbon geosequestration: applicability of existing rock physics models and implications for feasibility of a time lapse monitoring program in the Wellington Oil Field, Sumner County, Kansas.Lueck, Anthony January 1900 (has links)
Master of Science / Department of Geology / Abdelmoneam Raef / This study focuses on characterizing subsurface rock formations of the Wellington Field, in Sumner County, Kansas, for both geosequestration of carbon dioxide (CO₂) in the saline Arbuckle formation, and enhanced oil recovery of a depleting Mississippian oil reservoir. Multi-scale data including rock core plug samples, laboratory ultrasonic P-&S-waves, X-ray diffraction, and well log data including sonic and dipole sonic, is integrated in an effort to evaluate existing rock physics models, with the objective of establishing a model that best represents our reservoir and/or saline aquifer rock formations. We estimated compressional and shear wave velocities of rock core plugs for a Mississippian reservoir and Arbuckle saline aquifer, based on first arrival times using a laboratory setup consisting of an Ult 100 Ultrasonic System, a 12-ton hydraulic jack, and a force gauge; the laboratory setup is located in the geophysics lab in Thompson Hall at Kansas State University. The dynamic elastic constants Young’s Modulus, Bulk Modulus, Shear (Rigidity) Modulus and Poisson’s Ratio have been calculated based on the estimated P- and S-wave velocity data. Ultrasonic velocities have been compared to velocities estimated based on sonic and dipole sonic log data from the Wellington 1-32 well. We were unable to create a transformation of compressional wave sonic velocities to shear wave sonic for all wells where compressional wave sonic is available, due to a lack of understandable patterns observed from a relatively limited dataset. Furthermore, saturated elastic moduli and velocities based on sonic and dipole sonic well logs, in addition to dry rock moduli acquired from core plug samples allowed for the testing of various rock physics models. These models predict effects of changing effective (brine + CO₂ +hydrocarbon) fluid composition on seismic properties, and were compared to known values to ensure accuracy, thus revealing implications for feasibility of seismic monitoring in the KGS 1-32 well vicinity.
|
12 |
Time-Lapse Depletion Modeling Sensitivity Study: Gas-Filled Gulf of Mexico ReservoirGautre, Christy 14 May 2010 (has links)
Time-lapse seismic allows oil/gas reservoir monitoring during production, highlighting compaction and water movement. Time-lapse modeling, using a stress-dependent rock physics model, helps determine the need and frequency of expensive repeat seismic acquisition. We simulate a Gulf of Mexico gas reservoir time-lapse response for depletion and water flooding using uncertainty ranges in water saturation, porosity, stress-induced velocity changes, and pore compressibility. An analysis is conducted to see if a water-swept region could have been predicted. Findings show the swept and un-swept monitor cases amplitude differences range from 6% to 15%, which is higher than the actual monitor seismic noise level. Thus, it is unlikely these cases could be differentiated. However, the modeled amplitude changes from base to monitor cases do not match measured amplitude changes. This suggests the rock property model requires pressure-variance improvement and/or the changes in seismic amplitudes are associated with pressure/porosity, thickness, or saturation cases not modeled.
|
13 |
Effects of fractures on seismic waves in poroelastic formationsBrajanovski, Miroslav January 2004 (has links)
Naturally fractured reservoirs have attracted an increased interest of exploration and production geophysics in recent years. In many instances, natural fractures control the permeability of the reservoir, and hence the ability to find and characterize fractured areas of the reservoir represents a major challenge for seismic investigations. In fractured and porous reservoirs the fluid affects elastic anisotropy of the rock and also causes significant frequency dependent attenuation and dispersion. In this study we develop a mathematical model for seismic wave attenuation and dispersion in a porous medium in a porous medium with aligned fractured, caused by wave induced fluid flow between pores and fractures. In this work fractures in the porous rock are modelled as very thin and highly porous layers in a porous background. Dry highly porous materials have low elastic moduli; thus dry skeleton of our system contains thin and soft layers, and is described by linear slip theory. The fluid saturated rock with high-porasity layers is described by equations of poroelasticity with periodically varying coefficients. These equations are analyzed using propagator matrix approach commonly used to study effective properties of layered system. This yields a dispersion equation for a periodically layered saturated porous medium taking into account fluid communication between pore spaces of the layers. Taking in this dispersion equation a limit of small thickness for high-porosity layers gives the velocity and attenuation as a function of frequency and fracture parameters. The results of this analysis show that porous saturated rock with aligned fractures exhibits significant attenuation and velocity dispersion due to wave induced fluid flow between pores and fractures. / At low frequencies the material properties are equal to those obtained by anisotropic Gassmann theory applied to a porous material with linear-slip, interfaces. At high frequencies the results are equivalent to those for fractures with vanishingly small normal slip in a solid (non-porous) background. The characteristic frequency of the attenuation and dispersion depends on the background permeability, fluid viscosity, as well as fracture density and spacing. The wave induced fluid flow between pores and fractures considered in this work has exactly the same physical nature as so-called squirt flow, which is widely believed to by a major cause of seismic attenuation. Hence, the present model can be viewed as a new model of squirt-flow attenuation, consistent with Biot’s theory of poroelasticity. The theoretical results of this work are also limited by the assumption of periodic distribution of fractures. In reality fractures may be distributed in a random fashion. Sensitivity of our results to the violation of the periodicity assumption was examined numerically using reflectivity modelling for layered poroelastic media. Numerical experiments for a random distribution of fractures of the same thickness still show surprisingly good agreement with theoretical results obtained for periodic fractures. However this agreement may break down if fracture properties are allowed to vary from fracture to fracture. The results of this thesis show how to compute frequency dependences of attenuation and velocity caused by wave induced fluid flow between pores and fractures. These results can be used to obtain important parameters of fractured reservoirs, such as permeability and fracture weakness, from attenuation measurements. The major requirement for the success of such an approach is that measurements must be made in over a relatively broad frequency range.
|
14 |
Rock Physics-Based Carbonate Reservoir Pore Type Evaluation by Combining Geological, Petrophysical and Seismic DataDou, Qifeng 2011 May 1900 (has links)
Pore type variations account for complex velocity-porosity relationship and intensive permeability heterogeneity and consequently low oil and gas recovery in carbonate reservoir. However, it is a challenge for geologist and geophysicist to quantitatively estimate the influences of pore type complexity on velocity variation at a given porosity and porosity-permeability relationship. A new rock physics-based integrated approach in this study was proposed to quantitatively characterize the diversity of pore types and its influences on wave propagation in carbonate reservoir. Based on above knowledge, permeability prediction accuracy from petrophysical data can be improved compared to conventional approach. Two carbonate reservoirs with different reservoir features, one is a shallow carbonate reservoir with average high porosity (>10%) and another one is a supper-deep carbonate reservoir with average low porosity (<5%), are used to test the proposed approach.
Paleokarst is a major event to complicate carbonate reservoir pore structure. Because of limited data and lack of appropriate study methods, it is a difficulty to characterize subsurface paleokarst 3D distribution and estimate its influences on reservoir heterogeneity. A method by integrated seismic characterization is applied to delineate a complex subsurface paleokarst system in the Upper San Andres Formation, Permian basin, West Texas. Meanwhile, the complex paleokarst system is explained by using a carbonate platform hydrological model, similar to modern marine hydrological environments within carbonate islands.
How to evaluate carbonate reservoir permeability heterogeneity from 3D seismic data has been a dream for reservoir geoscientists, which is a key factor to optimize reservoir development strategy and enhance reservoir recovery. A two-step seismic inversions approach by integrating angle-stack seismic data and rock physics model is proposed to characterize pore-types complexity and further to identify the relative high permeability gas-bearing zones in low porosity reservoir (< 5%) using ChangXing super-deep carbonate reservoir as an example. Compared to the conventional permeability calculation method by best-fit function between porosity and permeability, the results in this study demonstrate that gas zones and non-gas zones in low porosity reservoir can be differentiated by using above integrated permeability characterization method.
|
15 |
An investigation of anisotropy using AVAZ and rock physics modeling in the Woodford Shale, Anadarko Basin, OKLamb, Alexander Peter Joseph 20 July 2012 (has links)
The Woodford Shale formation is currently an important unconventional gas resource that extends across parts of the mid-continent of the United States. A resource shale acts as source, seal, and reservoir, and its characterization is vital to successful exploitation and production of hydrocarbons.
This work is a surface seismic observation and investigation of the seismic anisotropy present in the Woodford Shale formation in the Anadarko Basin, Oklahoma. One of the main causes of anisotropy here is commonly believed to be vertical natural fractures (HTI) and horizontal alignment of clay minerals (VTI). Understanding the natural fracture orientation and density, as well as regional stress orientation, is important to the development of hydraulic fracturing programs in shales, such as the Woodford, producing natural gas. Dipole sonic log measurements in vertical boreholes suggest that the Woodford does possess vertical transverse isotropy (VTI), due possibly to horizontal layering or aligned clay minerals. Further, the borehole logs do not indicate horizontal transverse isotropy (HTI) associated with fracturing in the Woodford interval. An amplitude varying with angle and azimuth (AVAZ) analysis was applied to 3-D surface seismic data in the Anadarko Basin and shows the dipole sonic logs may not be completely characterizing the anisotropy observed in the Woodford. Once this apparent contradiction was discovered, additional work to characterize the fractures in the formation was undertaken. A petrophysical model based on the borehole data of the Woodford Shale was created, combining various techniques to simulate the rock properties and behavior. With a more complete rock physics model, a full stiffness tensor for the rock was obtained. From this model, synthetic seismic data were generated to compare to the field data. Furthermore, analytic equations were developed to relate crack density to AVAZ response. Currently, the application of this AVAZ method shows fracture orientation and relative variations in fracture density over the survey area. This work shows a direction for a quantified fracture density because the synthetic seismic data has a quantified fracture density at its basis. This allowed for a relationship to be established between explicit fracture parameters (such as fracture density) and AVAZ results and subsequently may be used to create regional descriptions of fracture and/or stress orientation and density. / text
|
16 |
Time-lapse seismic monitoring of subsurface fluid flowYuh, Sung H. 30 September 2004 (has links)
Time-lapse seismic monitoring repeats 3D seismic imaging over a reservoir to map fluid movements in a reservoir. During hydrocarbon production, the fluid saturation, pressure, and temperature of a reservoir change, thereby altering the acoustic properties of the reservoir. Time-lapse seismic analysis can illuminate these dynamic
changes of reservoir properties, and therefore has strong potential for improving reservoir
management. However, the response of a reservoir depends on many parameters and can be diffcult to understand and predict. Numerical modeling results integrating streamline fluid flow simulation, rock physics, and ray-Born seismic modeling address some of these problems. Calculations show that the sensitivity of amplitude changes to porosity depend on the type of sediment comprising the reservoir. For consolidated rock, high-porosity models show
larger amplitude changes than low porosity models. However, in an unconsolidated
formation, there is less consistent correlation between amplitude and porosity. The
rapid time-lapse modeling schemes also allow statistical analysis of the uncertainty in
seismic response associated with poorly known values of reservoir parameters such as
permeability and dry bulk modulus. Results show that for permeability, the maximum
uncertainties in time-lapse seismic signals occur at the water front, where saturation is most variable. For the dry bulk-modulus, the uncertainty is greatest near the
injection well, where the maximum saturation changes occur. Time-lapse seismic methods can also be applied to monitor CO2 sequestration.
Simulations show that since the acoustic properties of CO2 are very different from
those of hydrocarbons and water, it is possible to image CO2 saturation using seismic
monitoring. Furthermore, amplitude changes after supercritical fluid CO2 injection
are larger than liquid CO2 injection.
Two seismic surveys over Teal South Field, Eugene Island, Gulf of Mexico, were acquired at different times, and the numerical models provide important insights to understand changes in the reservoir. 4D seismic differences after cross-equalization
show that amplitude dimming occurs in the northeast and brightening occurs in the
southwest part of the field. Our forward model, which integrates production data,
petrophysicals, and seismic wave propagation simulation, shows that the amplitude
dimming and brightening can be explained by pore pressure drops and gas invasion, respectively.
|
17 |
SEISMIC TIME-LAPSE MONITORING OF POTENTIAL GAS HYDRATE DISSOCIATION AROUND BOREHOLES - COULD IT BE FEASIBLE? A CONCEPTUAL 2D STUDY LINKING GEOMECHANICAL AND SEISMIC FD MODELSPecher, Ingo A., Freij-Ayoub, Reem, Yang, Jinhai, Anderson, Ross, Tohidi, Bahman, MacBeth, Colin, Clennell, Ben 07 1900 (has links)
Monitoring of the seafloor for gas hydrate dissociation around boreholes during hydrocarbon production is likely to involve seismic methods because of the strong sensitivity of P-wave velocity to gas in sediment pores. Here, based on geomechanical models, we apply commonly used rock physics modeling to predict the seismic response to gas hydrate dissociation with a focus on P-impedance and performed sensitivity tests. For a given initial gas hydrate saturation, the mode of gas hydrate distribution (cementation, frame-bearing, or pore-filling) has the strongest effect on P-impedance, followed by the mesoscopic distribution of gas bubbles (evenly distributed in pores or “patchy”), gas saturation, and pore pressure. Of these, the distribution of gas is likely to be most challenging to predict. Conceptual 2-D FD wave-propagation modeling shows that it could be possible to detect gas hydrate dissociation after a few days.
|
18 |
A Rock Physics Based Investigation of Pore Structure Variations Associated with a CO2 Flood in a Clastic Reservoir, Delhi, LADavidson, Daniel 16 December 2013 (has links)
The permeability in siliclastic rocks can vary due to different pore geometries. The pore properties of a formation can also have significant effects on reflection coefficient. The pore structure of clastic rock may be predicted from a wave reflection using mathematical models. Biot-Gassmann and Sun’s equations are examples of two models which were used in this research to quantify the pore property. The purpose of this thesis is to measure variations in porosity and permeability using 3-D time lapsed seismic during a CO_(2) flood.
CO_(2) sequestration EOR will most likely cause permanent diagenetic effects that will alter pore geometry and permeability. This research shows compelling evidence that the pore structure changes in an active CO_(2) flood at the Delhi Holt-Bryant reservoir can be measured with acoustic data. The pore property change is measured by using the Baechle ratio, the Gassmann model, and the Sun framework flexibility factor. The change in the pore properties of the formation also indicates a increase in the permeability of the reservoir as a result of CO_(2) interaction.
|
19 |
Wellbore seismic and core sample measurement analysis: integrated geophysical study of the Lake Bosumtwi impact structure, GhanaMeillieux, Damien Yves Justin Unknown Date
No description available.
|
20 |
Wellbore seismic and core sample measurement analysis: integrated geophysical study of the Lake Bosumtwi impact structure, GhanaMeillieux, Damien Yves Justin 11 1900 (has links)
Wellbore seismic measurements were recorded in the Lake Bosumtwi impact structure, Ghana, in 2004. A full range of petrophysical measurements were also performed in the laboratory on core samples from the same boreholes.
The Vertical Seismic Profile shows low velocities for both P and S waves in the hardrock basement of the crater. Although we were expected to locate fractures within the rock, no upgoing waves were detected. Density and porosity measurements on the core samples indicate higher than normal porosity in the impact damaged rocks. Mercury porosimetry and SEM analysis characterized the pores as impact induced microcracks. These microcracks are most likely the reason for the low velocities observed on the seismic profiles, the in situ sonic logs, and the seismic velocity measurements on the core samples. Furthermore our laboratory P and S velocities measurements indicate a strong heterogeneity within the impactites. / Geophysics
|
Page generated in 0.048 seconds