• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 11
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 11
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

DEVELOPMENT OF CONTROLLED ROCKING REINFORCED MASONRY WALLS

Yassin, Ahmed January 2021 (has links)
The structural damage after the Christchurch earthquake (2011) led to extensively damaged facilities that did not collapse but did require demolition, representing more than 70% of the building stock in the central business district. These severe economic losses that result from conventional seismic design clearly show the importance of moving towards resilience-based design approaches of structures. For instance, special reinforced masonry shear walls (SRMWs), which are fixed-base walls, are typically designed to dissipate energy through the yielding of bonded reinforcement while special detailing is maintained to fulfill ductility requirements. This comes at the expense of accepting residual drifts and permanent damage in potential plastic hinge zones. This design process hinders the overall resilience of such walls because of the costs and time associated with the loss of operation and service shutdown. In controlled rocking systems, an elastic gap opening mechanism (i.e., rocking joint) replaces the typical yielding of the main reinforcement in conventional fixed-base walls, hence reducing wall lateral stiffness without excessive yielding damage. Consequently, controlled rocking wall systems with limited damage and self-centering behavior under the control of unbonded post-tensioning (PT) are considered favorable for modern resilient cities because of the costs associated with service shutdown (i.e., for structural repairs or replacement) are minimized. However, the difficulty of PT implementation during construction is challenging in practical masonry applications. In addition, PT losses due to PT yielding and early strength degradation of masonry reduce the self-centering ability of controlled rocking masonry walls with unbonded post-tensioning (PT-CRMWs). Such challenges demonstrate the importance of considering an alternative source of self-centering. In this regard, the current study initially evaluates the seismic performance of PT-CRMWs compared to SRMWs. Next, a new controlled rocking system for masonry walls is proposed, namely Energy Dissipation-Controlled Rocking Masonry Walls (ED-CRMWs), which are designed to self-center through vertical gravity loads only, without the use of PT tendons. To control the rocking response, supplemental energy dissipation (ED) devices are included. This proposed system is evaluated experimentally in two phases. In Phase I of the experimental program, the focus is to ensure that the intended behavior of ED-CRMWs is achieved. This is followed by design guidance, validated through collapse risk analysis of a series of 20 ED-CRMW archetypes. Finally, Phase II of the experimental program evaluates a more resilient ED-CRMW is evaluated, which incorporates a readily replaceable externally mounted flexural arm ED device. Design guidance is also provided for ED-CRMWs incorporating such devices. / Thesis / Doctor of Philosophy (PhD)
12

Theoretical Investigation of Rocking Frames under Horizontal Seismic Excitation with Application to Nuclear Facilities

Dar, Amitabh January 2023 (has links)
The seismic risk of a nuclear power plant (NPP) depends on structures, systems and components (SSCs) that are seismically qualified to a design basis earthquake (DBE) in Canada or a safe shutdown earthquake (SSE) in the United States. On the other hand, there exist some components that are not essential to safety but their seismic interaction with seismically-qualified SSCs adversely affects the seismic risk of such SSCs. Rocking frames consisting of a rigid beam freely supported by piers (e.g., a 150 Ton spare turbine rotor, or a 100 Ton idle steam generator resting on triangular or trapezoidal rigid piers) are common to NPPs. Seismic interaction of such frames with seismically-qualified safety components or their host structure may be detrimental to nuclear safety as witnessed in the 2013 Arkansas Nuclear One accident where the drop of a 500 Ton stator adversely impacted the severe core damage frequency of the entire plant, negatively affecting the nuclear risk. In order to ensure nuclear safety, it is essential to quantify the risk of a heavy component’s drop owing to a rocking frame’s instability caused by design basis accidents including seismic. A rocking frame’s beam support may be concentric or eccentric with respect to the pier’s center of mass depending on it’s geometry, for example, triangular or trapezoidal respectively. The current nuclear standards, ASCE 43-19 and CSA N289.1-2018 are silent about rocking frames. Literature has also not addressed the eccentricity variation. This thesis addresses the gap on seismic qualification of rocking frames by, establishing an equivalent rocking block for rocking frames with symmetrical support eccentricities, obtaining the response of frames with unsymmetrical support eccentricities and finally examining the stability of the two types of frames under slide restrained conditions. / Thesis / Doctor of Philosophy (PhD) / Rocking frames, each consisting of a heavy rigid horizontal beam freely supported on unanchored rigid piers, are common to nuclear power plants (NPPs) (e.g., a turbine rotor freely supported by triangular or trapezoidal piers). The support points for the beam on the pier in such frames may be concentric or eccentric with respect to the pier’s center of mass as in a triangular or trapezoidal pier configuration. The current Canadian and American nuclear standards do not provide guidance on rocking frames. Support eccentricity variation has not been addressed in the literature. Consequently, the seismic risk of rocking frame configurations, common to NPPs, remains unknown. This thesis addresses this gap by employing an equivalent rocking block model for frames with symmetrical eccentricities, with an equation of motion representing those with unsymmetrical eccentricities; and examining the stability of the two under slide-restrained conditions.
13

Seismic Rehabilitation of Steel Moment Frames Vulnerable to Soft-Story Failures Through Implementation of Rocking Cores

Sanchez, Juan Carlos 01 June 2013 (has links) (PDF)
During seismic events, inefficient steel moment frame building systems may exhibit soft-story failures. This thesis focuses on development and validation of a seismic retrofit strategy for avoiding soft-story failures in low-rise and mid-rise steel moment frame buildings. The considered retrofit strategy consists of a sufficiently stiff Rocking Core (RC) pinned to the foundation and pin connected to the existing frame. For demonstration purposes, two representative benchmark steel moment frames, which are modified from the three- and nine-story pre-Northridge steel moment frames designed for Los Angeles in the SAC Steel Project, are considered. Finite Element (FE) models of the benchmark buildings are developed with consideration of member yielding, connection rupture, and P-Delta effect, and validated using published results. Eigenvalue analyses are conducted to investigate the effect of the RC on system modal properties. It is found that in general the added RC with practical stiffness value does not significantly change the fundamental period and therefore does not attract excessive earthquake force to the system. In addition, nonlinear static pushover analyses are performed to address the beneficial contribution of the RC to the system under the performance objectives including immediate occupancy, life safety, and collapse prevention. The Monte-Carlo simulation technique is used to generate the random lateral force distribution required in the nonlinear static pushover analysis. It is found that RC works as expected in all considered scenarios and creates more uniform inter-story distribution along the vertical direction when it is sufficiently stiff. Furthermore, nonlinear dynamic analyses are conducted using three different ground motion suites (including two suites with ground motions having probabilities of exceedance of 2% and 10% in 50 years, and one suite with near-fault ground motions). It is shown that the systems with properly selected RC can achieve the Best Safety Objective defined in FEMA 356 and exhibit collapse prevention performance under near-fault earthquakes.
14

Response analysis of rigid structures rocking on viscoelastic foundation

Palmeri, Alessandro, Makris, N. January 2008 (has links)
In this paper the rocking response of slender/rigid structures stepping on a viscoelastic foundation is revisited. The study examines in depth the motion of the system with a non-linear analysis that complements the linear analysis presented in the past by other investigators. The non-linear formulation combines the fully non-linear equations of motion together with the impulse-momentum equations during impacts. The study shows that the response of the rocking block depends on the size, shape and slenderness of the block, the stiffness and damping of the foundation and the energy loss during impact. The effect of the stiffness and damping of the foundation system along with the influence of the coefficient of restitution during impact is presented in rocking spectra in which the peak values of the response are compared with those of the rigid block rocking on a monolithic base. Various trends of the response are identified. For instance, less slender and smaller blocks have a tendency to separate easier, whereas the smaller the angle of slenderness, the less sensitive the response to the flexibility, damping and coefficient of restitution of the foundation.
15

The Criticism and Evaluation of Walt Whitman's "Out of the Cradle Endlessly Rocking".

Seiter, Richard D. January 1965 (has links)
No description available.
16

Bio-Inspired Segmented Self-Centering Rocking Frame

Kea, Kara Dominique 01 July 2015 (has links)
This paper investigates the development, design and modeling of a human spine-inspired seismic lateral force resisting system. The overall goal is to create a design for a lateral force resisting system that reflects human spine behavior that is both practical and effective. The first phase of this project involved a literature review of the human spine and rocking structural systems. The goal of this phase was to identify concepts from the spine that could be transferred to a lateral force resisting system. The second phase involved creating a 3-dimensional model of the lumbar region of the spine in SAP2000 and using it to examine concepts that could be transferred to a lateral force resisting system. The third phase consisted of creating possible system designs using concepts and principles identified through phases one and two and identifying a final system design. The last phase involved modeling the final lateral force resisting system design in SAP2000, validating the model and testing the design's effectiveness. This paper shows that this system is a viable option to prevent permanent structural damage in buildings during a seismic event. / Master of Science
17

Óptica de raios X otimizada para estudo de dispositivos nanoestruturados com fontes compactas de radiação / X-ray optics optimized for studies of nanostructured devices with compact source

Darin Filho, Gaspar 28 May 2014 (has links)
Nanotecnologia é o conjunto de conhecimentos acumulados pelo homem que permite controlar a produção de estruturas com uma ou mais dimensões nanométricas. Desde seus primórdios na década de 70, a nanotecnologia tem estado em constante ascensão, encontrando uma diversidade enorme de aplicações, como por exemplo em medicina e na indústria optoeletrônica. Por consequência, a demanda por equipamentos tanto de preparo como de caracterização/controle tem crescido exponencialmente. O uso da radiação X no estudo de dispositivos nanoestruturados tem sido, em grande parte, possível gra- ças as fontes síncrotrons com feixes intensos. Mas a disponibilidade desses laboratórios de alta tecnologia está aquém da crescente demanda das pesquisas em nanotecnologia, as quais precisam de técnicas de análise estrutural rápidas e de fácil acesso para otimização e controle da produção de dispositivos nanoestruturados. Com foco nessa falta por técnicas de análise estrutural, esta dissertação tem como objetivo avaliar quais parâmetros básicos de nanodispositivos, com substratos monocristalinos, podem ser investigados por meio de técnicas de difração de raios X utilizando fontes compactas de radiação, bem como avaliar as limitações instrumentais. / X-ray radiation has provided a powerful tool for analyzing the structure of materials at atomic scale. While many are fascinated with the perspectives oered by advanced X-ray sources, the practical aspects of these perspectives in the actual and future scenery of nanotechnology needs to be discussed. Nanotechnology, i.e. the capacity of controlling matter at atomic-molecular scales and manufacturing structures with dimensions of a few tens of nanometers, has provided a constant challenge for structural analysis via X-ray techniques. The great diversity of materials and methods derived from nanotechnology is generating a huge demand for time of analysis, much beyond of that can be supplied by synchrotron facilities worldwide. In optimizing nanostructured materials and devices processing methods, fast and easy-access techniques to control and characterization are required. Microscopy and spectroscopy techniques are very important in this scenery, but they have intrinsic limitations that have justied the search for high-resolution techniques of structural analysis, such as those obtained by diraction of X-rays. The use of Xradiation in the study of nanostructured device has been possible by synchrotron sources due to the high intense beams. But the availability of these high tech laboratories falls short of the growing demand for nanotechnology research. In this context, this dissertation intend evaluate which basic parameters of nanodevices with single crystal substrates can be investigated by techniques of X-ray diraction using compact radiation sources as well how to evaluate the instrumental limitations .
18

Óptica de raios X otimizada para estudo de dispositivos nanoestruturados com fontes compactas de radiação / X-ray optics optimized for studies of nanostructured devices with compact source

Gaspar Darin Filho 28 May 2014 (has links)
Nanotecnologia é o conjunto de conhecimentos acumulados pelo homem que permite controlar a produção de estruturas com uma ou mais dimensões nanométricas. Desde seus primórdios na década de 70, a nanotecnologia tem estado em constante ascensão, encontrando uma diversidade enorme de aplicações, como por exemplo em medicina e na indústria optoeletrônica. Por consequência, a demanda por equipamentos tanto de preparo como de caracterização/controle tem crescido exponencialmente. O uso da radiação X no estudo de dispositivos nanoestruturados tem sido, em grande parte, possível gra- ças as fontes síncrotrons com feixes intensos. Mas a disponibilidade desses laboratórios de alta tecnologia está aquém da crescente demanda das pesquisas em nanotecnologia, as quais precisam de técnicas de análise estrutural rápidas e de fácil acesso para otimização e controle da produção de dispositivos nanoestruturados. Com foco nessa falta por técnicas de análise estrutural, esta dissertação tem como objetivo avaliar quais parâmetros básicos de nanodispositivos, com substratos monocristalinos, podem ser investigados por meio de técnicas de difração de raios X utilizando fontes compactas de radiação, bem como avaliar as limitações instrumentais. / X-ray radiation has provided a powerful tool for analyzing the structure of materials at atomic scale. While many are fascinated with the perspectives oered by advanced X-ray sources, the practical aspects of these perspectives in the actual and future scenery of nanotechnology needs to be discussed. Nanotechnology, i.e. the capacity of controlling matter at atomic-molecular scales and manufacturing structures with dimensions of a few tens of nanometers, has provided a constant challenge for structural analysis via X-ray techniques. The great diversity of materials and methods derived from nanotechnology is generating a huge demand for time of analysis, much beyond of that can be supplied by synchrotron facilities worldwide. In optimizing nanostructured materials and devices processing methods, fast and easy-access techniques to control and characterization are required. Microscopy and spectroscopy techniques are very important in this scenery, but they have intrinsic limitations that have justied the search for high-resolution techniques of structural analysis, such as those obtained by diraction of X-rays. The use of Xradiation in the study of nanostructured device has been possible by synchrotron sources due to the high intense beams. But the availability of these high tech laboratories falls short of the growing demand for nanotechnology research. In this context, this dissertation intend evaluate which basic parameters of nanodevices with single crystal substrates can be investigated by techniques of X-ray diraction using compact radiation sources as well how to evaluate the instrumental limitations .
19

Validating a new in vitro model for dynamic fluid shear stress mechanobiology

Tucker, Russell P. January 2013 (has links)
In vitro mechanotransduction studies, uncovering the basic science of the response of cells to mechanical forces, are essential for progress in tissue engineering and its clinical application. Many varying investigations have described a multitude of cell responses, however as the precise nature and magnitude of the stresses applied are infrequently reported and rarely validated, the experiments are often not comparable, limiting research progress. This thesis provides physical and biological validation of a widely available fluid stimulation device, a see-saw rocker, as an In vitro model for cyclic fluid shear stress mechanotransduction. This allows linkage between precisely characterised stimuli and cell monolayer response in a convenient six-well plate format. Computational fluid dynamic models of one well were analysed extensively to generate convergent, stable and consistent predictions of the cyclic fluid velocity vectors at a rocking frequency of 0.5 Hz, accounting for the free surface. Validation was provided by comparison with flow velocities measured experimentally using particle image velocimetry. Qualitative flow behaviour was matched and quantitative analysis showed good agreement at representative locations and time points. A maximum shear stress of 0.22Pa was estimated near the well edge, and time-average shear stress ranged between 0.029 and 0.068Pa, within the envelope of previous musculoskeletal In vitro fluid flow investigations. The CFD model was extended to explore changes in culture medium viscosity, rocking frequency and the robustness to position on the rocking platform. Shear stress magnitude was shown to increase almost linearly with an increase in the viscosity of culture medium. Compared with 0.5 Hz, models at 0.083 and 1:167 Hz, the operational limits of the see-saw rocker, indicated a change in shear stress patterns at the cell layer, and a reduction and increase in mean shear stress respectively. At the platform edge at 0.5 Hz, a 1.67-fold increase in time-average shear stress was identified. Extensive biological validations using human tenocytes underlined the versatility of the simple In vitro device. The application of fluid-induced shear stress at 0.5 Hz under varying regimes up to 0.714Pa caused a significant increase in secreted collagen (p < 0.05) compared to static controls. Tenocytes stimulated at a shear stress magnitude of 1.023Pa secreted significantly less collagen compared to static controls. The potential for a local maximum in the relationship between collagen secretion rate and shear stress was identified, indicating a change from anabolic to catabolic behaviour. Collagen biochemical assay results were echoed with antibody stains for proteins, where a co-localisation of connexin-32 with collagen type-I was also identified. A custom algorithm showed that four hours of fluid-induced shear stress of 0:033Pa intermittently applied to tenocytes encouraged alignment and elongation over an eight day period in comparison to static controls. Primary cilia were identified in human tenocyte cultures and bovine flexor tendon tissue; however primary cilium abrogation In vitro using chloral hydrate proved detrimental to cell viability. Collaborative investigations identified that ERK signalling and c-Fos transcription factor expression peaked after the application of 0.012Pa at 0.083 Hz for 20 minutes and anabolic collagen gene expression relative quantities increased after 48 hours of rocking at 0.083 Hz. In conclusion, validated shear stresses within a six-well plate, induced by cyclic flow from a see-saw rocker, provides an exceptional model for the In vitro study of dynamic fluid shear stress mechanobiology. Biological investigations have been linked to precise applied shear stress, creating a foundation for understanding the complex relationship between tenocytes and fluid-induced shear stress In vitro. Using this model, research is repeatable, comparable and accurately attributed to shear stress, accelerating the scientific advancement of musculoskeletal mechanobiology.
20

Efeito do cálcio na homeostase de brotações de um clone de Eucalyptus grandis Hill (ex Maiden) sob condições de deficiência hídrica induzida in vitro. / The effects of calcium in the homeostasis of one clone of Eucalyptus grandis Hill (ex Maiden) shoots under water defecit conditions induced in vitro.

Stefanuto, Vanderlei Antonio 04 April 2002 (has links)
Este trabalho teve como objetivo verificar os efeitos de diferentes concentrações de cálcio nas respostas de brotações de E. grandis submetido à deficiência hídrica. A hipótese deste trabalho foi a de que o cálcio atua como amenizador dos efeitos causados pela deficiência hídrica. Isto é, aumentando a tolerância (estabilidade) das plantas, retardando as alterações de alguns parâmetros bioquímicos que contribuem para o ajuste osmótico, evitando assim, perdas energéticas excessivas nas sínteses de osmólitos como: açúcares solúveis, aminoácidos solúveis entre outros. Brotações de E. grandis foram cultivadas em meio JADS líquido, suplementadas com 15% de PEG 6000 e diferentes concentrações de cálcio: 5,0 (controle); 7,5; 10,0; 12,5 e 15,0 mmol.L -1 . Foram realizadas 4 repetições por tratamento em blocos inteiramente casualizados. As respostas das plantas foram avaliadas de acordo com os seguintes parâmetros: taxa de crescimento relativo, conteúdo de aminoácidos solúveis totais; açúcares solúveis totais; prolina; proteínas totais; teores de clorofila a, b e total; anatomia foliar e potencial hídrico foliar (yf) As condições de de cultivo foram: PAR 50 ± 2 mmol. m -2 s -1 , 25 ± 2° C, e fotoperíodo de 16 horas. As análises foram realizadas aos 7 e 21 dias de cultivo. Então, todo o material vegetal restante foi repicado e transferido para meio JADS básico por 21 dias para a avaliação da recuperação das plantas. O tratamento com PEG, sem cálcio suplementar induziu respostas significativas (Tukey, p< 0,05) em todos os parâmetros bioquímicos em relação ao controle (JADS básico). As análises de componentes principais demonstraram que a dose de cálcio suplementar que mais contribuiu para a homeostase das plantas sob deficiência hídrica foi 7,5 mmol.L -1 de cálcio na forma de CaCl2. / The aim of this work was to verify the effects of diferent calcium concentrations in the response of E. grandis shoots to the water deficit. The hypotesis of this work was the calcium acts as a buffer to the effects induced by the water deficit. Thus, increasing the tolerance (estability) of the plants, slowing the changes in some biochemical parameters that contribute to the osmotic adjustment and avoiding excessive energetic losses in the synthesis of osmolites like: soluble sugar, soluble aminoacids amg others. Shoots of E. grandis were cultivated in liquid JADS medium supplemented with 15% of PEG 600 and different concentration of calcium: 5,0 (control) 7,5; 10,0; 12,5 e 15,0 mmol.L-1. Four replicates were made for treatment in a totally randomized blocks design. The plant responses were evalueted according to the folling variables: relative growth rate, total soluble aminoacid content; total soluble sugars; proline content, total sugars; proline content, total soluble proteins, chlorophyll a and b contents, leaf anatomy and leaf water potencial (yf). The growth conditions were: PAR 50 ± 2 mmol. m -2 s -1 , 25 ± 2° C ad 16 hour photoperiod. The analysis were made at the seventh and the 21 rts days of culture. Then, all the remainng shoots were transplanted in vitro JADS basic medium for shoots recovery after 21 days of culture. The tratment with PEG 6000 without calcium addition induced signifitive responses (Tukey, p<0,05) for all biochemical variables in the relation to the control (basic JADS medium). The PCA showed that the supplementar calcium concentration that contributed the most to the shoot homeostais under water deficit was that of 7.5 mmol.L-1 in the form of CaCl2.

Page generated in 0.0696 seconds