• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Shaft Current Protection

Rabuzin, Tin January 2015 (has links)
Shaft current protection in hydro and turbo generators is an important generatorprotection issue. Currents owing in the generator shaft might damagegenerator bearings which, in turn, could reduce operating time and cause largenancial losses. Therefore, it is important to prevent operation of the generatorunder conditions of high shaft currents.In this project, task was to develop measurement and protection system thatis able to operate under certain conditions. Measurement device has to be ableto accurately measure currents lower than 1 A in a generator shaft that canvary in diameter from 16 cm up to 3 m. Also, those currents might appear infrequencies equal to multiples of line frequency. Device is to be located in alimited space and in a proximity of the generator. Thus, stray ux is expectedwhich might inuence measurements. Furthermore, since currents that haveto be measured are low, output of a measurement device is usually a low levelsignal. Such signal had to be catered for and adapted in a way that it can beused with numerical relay. After literature review and overview of possible solutions, Rogowski coil waschosen as the measurement device which will be further analysed. Two othercurrent transformers were considered which served as a good comparison withRogowski coil. Several dierent tests and measurements were made on mentionedmeasurement devices. Also, it was investigated how IEC61850-9-2 andMerging Unit (MU) could be used in this application. Upon this investigation,complete protection systems were assembled in the laboratory and they weretested. To asses the behaviour of dierent systems in the real environment, test installationwas built in the hydro power plant, Hallstahammar. This installationincluded traditional systems, with measurement signals connected to the relaya,and the one which utilized concepts of Process Bus and Merging Unit. Measurementsand tests that were made there served as a nal proof of successfulnessof protection systems. Results showed that Rogowski coil was a suitable choice for a measurementdevice due to its benecial mechanical and electrical properties. Also, tests madewith actual shaft current showed advantages of using Rogowski coil in pair withMerging Unit and process bus over traditional protection systems. Nevertheless,it was conrmed that both types of systems satisfy project requirements. / Skydd mot axelstrommar i vattenkraft- och turbo-generatorer ar mycket viktiga. Strommar kan uppkomma i generatoraxeln beroende pamagnetisk osymmetri istatorkarnan. Denna osymmetri ger upphov till en inducerad spanning i axelnsom sedan kan ge en axel-strom vid kortslutning av isolationen som rotornslager vilar pa. Om axel-strommen gar genom generatorns lager, kan lagretskadas allvarligt. Detta kommer i sin tur minska drifttiden och orsaka storaekonomiska forluster vid produktionsbortfall. Darfor ar det viktigt att detekteraom det gar axelstrommar genom generatorns lager. Examensarbetets mal var att utveckla ett mat- och skyddssystem for att detekteraaxel-strommar. Den matande enheten maste kunna detektera strommarmindre an 1 A i generatoraxeln vilken kan variera i diameter fran 16 cm upp till3 m. Dessutom kan dessa strommar ha frekvenser lika med eller multiplar avkraftnatets frekvens (50 eller 60Hz). Den matande enheten skall vidare kunnamonteras i ett trangt utrymme och i narhet av generatorns stator. Lackodefran statorn kan forvantas vara stort, och detta kan antas ha stor paverkanpamatningarna. Eftersom axelstrommen som mats ar lag, ar utsignalen franden matande enheten vanligtvis en lagnivasignal. Denna laga signalnivamasteanpassas saatt den kan anvandas i ett numeriskt rela, vilka vanligtvis kraverhogre energinivaer paingangsignalerna.Efter genomford litteraturstudie och oversikt over mojliga losningar, konkluderadesdet att en losning med Rogowski spole som matanordning borde varaintressant, och denna analyserades ytterligare. Tvastromtransformatorer medkonventionell konstruktion med karna av elektroplat valdes som jamforelse medlosningen baserad paRogowski spole. Flera olika tester och matningar gjordes. Dessutom undersoktes hur en process-bus losning enligt IEC61850-9-2LE meden Merging Unit (MU) skulle kunna anvandas i denna tillampning. Vid alladessa undersokningar har kompletta system for matning och skydd monteratsoch testats i laboratoriemiljo.For att registrera funktionen for de olika systemlosningarna i en verkligmiljo, monterades det kompletta systemet fran laboratorietesterna in i ett vattenkraftverki Hallstahammar. I detta vattenkraftverk ingar traditionella skydd-, styrnings- och kontroll-system och aven en aldre losning for att skydda generatornmot axelstrommar. Darmed kunde man jamfora prestanda mellan deolika losningarna baserade pastromtransformatorer av konventionell konstruktionmed karna av elektroplat och losningen med Rogowski spole. Signalerfran bada givarna anslots till ett numeriskt rela, och anslutning av Rogowskispolen gjordes aven via en MU till det numeriska relat. Matningar och testersom gjordes i kraftstationen kunde tas som ett slutligt bevis paatt de olikalosningarna baserade pa Rogowski spole ar en framtida losning for ett valfungerande axel-stroms skydd for generatorer. Resultaten visar att Rogowskispolen ar ett lampligt val aven med avseendepadess fordelaktiga mekaniska och elektriska egenskaper. Testerna som gjordesmed en verklig axel-strom visade tydligt fordelarna med att anvanda Rogowskispolen i kombination med MU och process bus jamfort med traditionella skyddssystem. Det ska dock understrykas att bade systemet med och det utan MUuppfyllde projektets krav.
2

Analyser av två VSC-HVDC-stationer genom långtidsmätningar med elkvalitetsmätare / Analysis of two VSC-HVDC stations through long-time measurements with power quality analyzers

Pettersson, Martin January 2018 (has links)
Gotland har länge präglats av mycket speciella lösningar och legat i framkant vad gäller ny teknik. Under ca 20 år har Gotland haft en VSC-HVDC-station som har stabiliserat spänningen i det gotländska nätet. HVDC Light har löst en del av de tekniska begränsningarna som hindrat utvecklingen av vindkraftverk. Anläggningen börjar lida mot slutet av sin tekniska livslängd och examensarbetet är ett första steg i utredningen för en eventuell ersättning. Med hjälp av elkvalitetsmätare kartlagdes prestanda och eventuella förbättringsområden. Den svenska stamnätsoperatören Svenska kraftnät har sedan 2016 haft en VSC-HVDC-station som använts för att utväxla energi till asynkrona systemet i Östeuropa. Svenska kraftnät har på senare tid velat utnyttja spänningsregleringsmöjligheterna och utreda mättekniska metoder. Elkvalitetsmätare placerades ut på lämpliga mätpunkter för att utreda anläggningens beteenden. ELSPEC G4500 elkvalitetsmätare installerades på Nordbalt och Gotlands HVDC Light för att mäta under sensommar till hösten 2017. Skillnader mellan CVT och IVT samt Rogowskispole och CT mättes. Valet av ELSPEC lämpade sig bra eftersom att inga triggningsvillkor behövdes som tillåter att man kan upptäcka små men viktiga avvikelser. Gotlands HVDC Light stabiliserar nätet främst mot spänningsdippar efter kortslutningar i 10 kV-elnätet och flimmer ifrån vindkraftsparkerna i ände 2. Märkeffekten för en uppdaterad anläggning kommer baseras på den kortslutningseffekt i 10 kV-nätet som kan utvecklas under anläggningens livstid. Spänningsregleringen ska baseras på en PI-regulator och ska kunna reglera fullt på 40 ms. Komponentspänningar kan användas för att ge reaktiv effekt på de faser som behöver det. Behovet mot flimmer ska baseras på en mätning i närmaste konsumtionscentrum, två mil från ände 2. Om behovet finns, ska en separat loop för flimmerkontroll som motverkar 1,5 Hz-komponenter implementeras utifrån en punkt ca 1,5 mil ifrån ände 2. Teknikvalet står mellan two-level generation 3 eller MMC, beroende på uppgradering eller ersättning. Många olika framtida scenarion påverkar HVDC Lights roll och oavsett, kommer mycket resurser behövas för Gotlands och HVDC Lights framtid. Det har observerats två beteenden på Nordbalt varav ena är långsam och det andra beteendet är snabbt. Det snabba beteendet uppstår när lågohmiga fel sker som också synkronmaskinerna tar hand om. Nordbalt kan hjälpa till för mindre spänningsvariationer om den varit snabbare likt beteendet vid lågohmiga fel. En stabilitetsbedömning behövs dock eftersom att snabbare beteende ökar risken för instabilitet. Eftersom att data mellan CVT och IVT skiljde sig mycket, upplystes mättekniska problem. Några lösningar diskuteras varav RCVT och PQSensor gås igenom grundligt. Alternativa lösningar som MoW och mobila enheter presenteras också vagt. Samtliga lösningar visade sig ha praktiska hinder, vilket försvårar genomförandet. Det uppmanas därför att man bör testa teknikerna i laborationsmiljö eftersom begränsat med studier gjorts på dessa samt att konkurrerande tillverkare uppger olika uppgifter. / Gotland has long been known for various special solutions and been on the leading edge regarding new technology. For the past 20 years Gotland has had a VSC-HVDC station that has stabilized the voltage in the Gotlandic grid. HVDC Light has solved some of the technical limitations that has hindered the growth of wind turbines. The station has almost reached the end of its technical lifespan and the thesis is a first step in the investigation for an eventual replacement. With power quality analyzers performance and improvements were investigated. The Swedish transmission system operator Svenska kraftnät have since 2016 had a VSCHVDC station that have been used to exchange energy to the asynchronous system in Eastern Europe. Svenska kraftnät has of lately wanted to take advantage of the voltage control capabilities and investigate measurement technologies. Power quality analyzers were installed on suitable connection points to investigate the behavior of the station. ELSPEC G4500 power quality analyzers were installed on Nordbalt’s and Gotland’s HVDC Light to measure during the late summer to fall of 2017. The differences between CVT and IVT, and Rogowski coil and CT were captured. The choice of ELSPEC suited well since no trigger conditions are needed which allows small but important errors to be discovered. Gotland’s HVDC Light stabilizes the grid mostly against voltage sags for faults in the 10 kVgrid and flicker from the wind farms in node 2. The rated power for an upgrade should be based on the 10 kV-grid short-circuit power to be developed during the station’s life span. The voltage control should be based on a PI-controller and should be able to transmit full power in 40 ms. Component voltages can be used to produce reactive power on the phases in need. The need against flicker should be based on measurements in the closest center of consumption, 2 miles from node 2. If it’s needed, a separate loop for flicker-control that prevents 1.5 Hz-components based on a point 1.5 mile from node 2 should be implemented. Depending on an upgrade or replacement, the topology can either be “two-level generation 3” or MMC. Many different future scenarios affect HVDC Light’s role and more resources will be required for Gotland’s and HVDC Light’s future. Two behaviors have been observed on Nordbalt where one is slow and the other behavior is fast. The fast behavior was only observed when low impedance faults occurs, that the synchronous generators also handles. Nordbalt can contribute to small voltage variations if it was faster, like the behavior for low impedance faults. A consideration in stability is needed since a faster behavior can lead to stability problems. Since the data between CVT and IVT differed a lot, metrology problems were discovered. Some solutions were discussed, of which RCVT and PQSensor was thoroughly reviewed. Alternative solutions like MoW and mobile units were also presented vaguely. All solutions showed practical difficulties, which complicates the implementation. It is therefore encouraged to test the technologies in a laboratory environment since few studies have been made on these and competing manufactures state different information.

Page generated in 0.0314 seconds