Spelling suggestions: "subject:"root respiration"" "subject:"foot respiration""
1 |
Ozone effects on red oak root dynamicsKelting, Daniel L. 13 February 2009 (has links)
Many research projects concerning the possible deleterious effects of ozone on forest health have been conducted on individual tree species. The common goal of these projects has been to identify mechanisms of damage by ozone, and then extrapolate research results to forests. Results from seedling studies are used to parameterize process-based tree growth models which are used to project mature tree responses to different levels of ozone. This approach has been criticized because nothing is known about differences in seedling and mature-tree responses to ozone. Another problem is that few projects have examined the effects of ozone on below ground processes; therefore, very little data exists for parameterizing the models. In order to address the problem of scaling seedling results to mature trees, and increase our level of understanding of ozone effects on below ground processes, an ozone fumigation experiment on northern red oak seedlings and mature trees was conducted. It was hypothesized that carbon reallocation to replace foliage damaged by ozone would decrease fine-root production and turnover. The red oak trees and seedlings were fumigated for three years with three levels of ozone (subambient, ambient, and 2X ambient) in open-top chambers. After two seasons of exposure, 2X ozone (0.082 ppm 7hr-mean conc.) reduced mature- tree cumulative net fine-root production and turnover by 31 and 41 %, respectively, relative to ambient ozone (0.042 ppm 7hr-mean conc.). For the same time period, ozone had no effect on seedling cumulative fine-root turnover; fine-root production was 25% higher under ambient ozone relative to subambient and 2X ambient ozone. During the summer, 1994, mature tree BUE was reduced by 2X ozone. Decreased fine-root production, turnover, and BUE under 2X ozone for the mature trees indicates that ozone can alter the dynamics of belowground carbon allocation in mature red oak. Since the seedlings were not sensitive to ozone, use of seedling results for modelling purposes may underestimate mature tree responses to ozone. / Master of Science
|
2 |
Seasonal Course of Root Respiration in Atriplex confertifoliaHolthausen, Richard S. 01 May 1977 (has links)
Root respiratory response of mature Atriplex confertifolia plants growing in established communities was measured during two growing seasons using freshly excised root segments and gas chromatography techniques. Respiratory response at fixed test temperatures changed significantly during the growing season, and this pattern of respiratory adjustment varied for root segments located at different depths in the soil profile. Respiration measured at a constant test temperature was highest during early sumner, and declined to minimum values in late summer and fall. Root segments taken from the top 30 cm of the soil profile displayed peak activity several weeks before root segments from greater depths reached maximum activity. The significance of these patterns of respiration is discussed in relation to the carbon balance of Atriplex plants and the uses of respiratory energy within the root system.
|
3 |
炭素同位体比を用いた森林土壌呼吸中の根呼吸の評価YAMAZAWA, Hiromi, MORIIZUMI, Jun, HACHIYA, Masashi, 山澤, 弘実, 森泉, 純, 蜂谷, 真史 03 1900 (has links)
第22回名古屋大学年代測定総合研究センターシンポジウム平成21(2009)年度報告
|
4 |
Characterizing the Respiration of Stems and Roots of Three Hardwood Tree Species in the Great Smoky MountainsRakonczay, Zoltán 14 July 1997 (has links)
Carbon dioxide efflux rates (CER) of stems and roots of overstory and understory black cherry (<i>Prunus serotina</i> Ehrh., BC), red maple (<i>Acer rubrum</i> L., RM) and northern red oak (<i>Quercus rubra</i> L., RO) trees were monitored over two growing seasons at two contrasting sites in the Great Smoky Mountains to investigate diurnal and seasonal patterns in respiration and to develop prediction models based on environmental and plant parameters.
CER of small roots (d<0-8 mm) was measured with a newly developed system which allows periodic <i>in situ</i> measurements by using permanently installed flexible cuvettes. Temperature-adjusted CER of roots showed no diel variation. The moderate long-term changes occurred simultaneously in all species and size classes, suggesting that they were driven mostly by environmental factors. Mean root CER ranged from 0.5 to 4.0 nmol g⁻¹ d.w. s⁻¹. Rates were up to six times higher for fine roots (d<2.0 mm) than for coarse roots.
CER (per unit length) of boles (d>10 cm) and twigs (d<2 cm) was related to diameter by the function lnCER = a+<i>D</i>·lnd, with <i>D</i> between 1.2 and 1.8. A new, scale-invariant measure of CER, based on <i>D</i>, facilitated comparisons across diameters. Q₁₀ varied with the method of determination, and it was higher in spring (1.8-2.5) than in autumn (1.4-1.5) for all species. Daytime bole CER often fell below temperature-based predictions, likely due to transpiration. The reduction (usually <10%) was less pronounced at the drier site. Twig CER showed more substantial (often >±50%) deviations from the predictions. Deviations were higher in the canopy than in the understory. Mean bole maintenance respiration (at 20°C and d=20 cm) was 0.66, 0.43 and 0.50 μMol m⁻¹, while the volume-based growth coefficient was around 5, 6 and 8 mol cm⁻³ for BC, RM and RO, respectively.
In a controlled study, BC and RM seedlings were fumigated in open-top chambers with sub-ambient, ambient and twice-ambient levels of ozone. The twice-ambient treatment reduced stem CER in BC by 50% (p=0.05) in July, but there was no treatment effect in September or in RM. Ozone reduced root/shoot ratio and diameter growth in BC, and P<sub>max</sub> in both species. / Ph. D.
|
5 |
Soil Co2 Efflux and Soil Carbon Content as Influenced by Thinning in Loblolly Pine Plantations on the Piedmont of VirginiaSelig, Marcus Franklin 30 July 2003 (has links)
The thinning of loblolly pine plantations has a great potential to influence the fluxes and storage of carbon within managed stands. This study looked at the effects of thinning on aboveground carbon and mineral soil carbon storage, 14-years after the thinning of an 8-year-old loblolly pine plantation on the piedmont of Virginia. The study also examined soil respiration for one year following the second thinning of the same stand at age twenty-two. The study was conducted using three replicate .222 hectare stands planted using 3.05 by 3.05 meter spacing in 1980 at the Reynolds Homestead in Critz, VA.
Using two different sample collection methods it was determined that soil carbon was evenly dispersed throughout thinned plots, and that random sampling techniques were adequate for capturing spatial variability. Soil carbon showed a significant negative correlation with soil depth (p=0.0001), and by testing the difference between intercepts in this relationship, it was determined that thinning significantly increased soil carbon by 31.9% across all depths (p=0.0004). However, after accounting for losses in aboveground wood production, thinning resulted in an overall 10% loss in stand carbon storage. However, this analysis did not take into account the fate of wood products following removal.
Soil respiration, soil temperature, and soil moisture were measured every month for one year near randomly selected stumps and trees. In order to account for spatial variation, split plots were measured at positions adjacent to stumps and 1.5 meters away from stumps. Soil temperature and moisture were both significantly affected by thinning. Regression analysis was performed to determine significant drivers in soil CO2 efflux. Temperature proved to be the most significant driver of soil respiration, with a positive correlation in thinned and unthinned stands. When modeled using regression, thinning was a significant variable for predicting soil respiration (p < 0.0009), but explained only 3.4% of the variation. The effects of thinning were responsible for decreased respiration, however, when coupled with increased temperatures, soil respiration was elevated in thinned stands. / Master of Science
|
6 |
Soil Carbon Dioxide Efflux in Response to Fertilization and Mulching Treatments in a Two-Year-Old Loblolly Pine (Pinus taeda L.) Plantation in the Virginia PiedmontPangle, Robert E. 27 December 2000 (has links)
Due to concern over the increasing concentration of carbon dioxide in the atmosphere, forest researchers and managers are currently studying the effects of varying silvicultural and harvesting practices on the carbon dynamics of intensely managed forest ecosystems. Soil carbon dioxide efflux resulting from soil microbial activity and root respiration is one of the major components of the total carbon flux in forested ecosystems.
In an effort to examine the response of soil carbon dioxide efflux to changes in soil factors, nutrient availability, temperature, and moisture, soil respiration rates were measured monthly over an entire year in a two-year-old loblolly pine (Pinus taeda L.) plantation subjected to fertilization and mulching treatments. A dynamic, closed-chamber infrared gas analysis system was used to measure efflux rates from plots treated with one of four treatment combinations including: nitrogen (115 kg/ha) and phosphorus (11.5 kg/ha) fertilization with black landscape cloth (mulch), fertilization without mulch, mulch without fertilization, and no treatment (control). For each treatment combination, plots were established at the seedling base and 1.22 m away from the seedling base to examine the effect of seedling roots on soil carbon dioxide efflux rates. Soil temperature and moisture were measured at each chamber position monthly and soil coarse fragments, soil nutrient levels, percent carbon, root biomass and coarse woody debris were measured beneath 64 chambers at the end of the study.
Fertilization had no significant effect on efflux rates during any of our monthly sampling sessions despite the fact that fertilized seedlings experienced significant increases in both above and belowground biomass. Conversely, regression analysis of growing season soil carbon dioxide efflux rates revealed a slightly negative correlation with both total seedling nutrient uptake and biomass. Rates in plots with mulching were significantly higher than rates from non-mulched plots during five monthly measurement sessions, and higher rates in mulched plots during winter months was attributable to warmer soil temperatures. Rates at the seedling base were always significantly higher than rates in plots away from the seedling. Although rates were always higher at the seedling base, the variability observed was only weakly correlated with the amount of pine roots present beneath respiration chambers. Utilizing soil temperature and moisture, soil carbon, and cuvette fine root biomass in a regression model explained 54% of the variance observed in efflux rates across the yearlong study period. Soil temperature alone explained 42.2% of the variance, followed by soil carbon and soil moisture at 5.2% and 2.7% respectively. The amount of pine fine roots under measurement chambers accounted for only 2.4% of the variance. An additional 1.5% was explained by other factors such as soil phosphorus, coarse woody debris, non-pine root biomass, and soil calcium. An examination of the factors affecting the spatial patterns of soil carbon dioxide efflux revealed that total soil carbon and the amount of fine pine root biomass beneath cuvette base rings explain 38% and 11% respectively, of the observed variability in mean annual soil carbon dioxide efflux from differing plots.
The most influential factor affecting soil carbon dioxide efflux during the yearlong study period was soil temperature and modeling of seasonal soil carbon dioxide efflux rates from managed forests using both soil temperature and moisture should be achievable with the establishment of data sets and statistical models covering a range of sites differing in productivity, stand age, and management intensity. The establishment of data sets and statistical models across a variety of forest sites should account for the changing influence of soil carbon levels, aboveground biomass, microbial activity, organic matter inputs, and root biomass on soil carbon dioxide efflux. / Master of Science
|
7 |
Effects of Elevated CO2 on Crop Growth Rates, Radiation Absorption, Canopy Quantum Yield, Canopy Carbon Use Efficiency, and Root Respiration of WheatMonje, Oscar A. 01 May 1993 (has links)
Wheat canopies were grown at either 330 or 1200 μmol mol-1 CO2 in sealed controlled environments, where carbon fluxes and radiation interception were continuously and nondestructively measured during their life cycles. The effects of elevated CO2 on daily growth rates, canopy quantum yield, canopy and root carbon use efficiencies, and final dry mass were calculated from carbon flux measurements in an open gas exchange system. Dry biomass at harvest was predicted from the gas exchange data to within ± 8%. The greatest effect of elevated CO2 occurred in the first 15d after emergence; however, several physiological processes were enhanced throughout the life cycle. Elevated CO2 increased average net photosynthesis by 30%, average shoot respiration by 10%, and average root respiration by 40%. Crop growth rate, calculated from gas exchange data, was 30% higher during both vegetative growth and reproductive growth. Elevated CO 2 did not affect radiation interception, but increased average canopy quantum yield from 0.039 to 0.051 (31%). Average canopy carbon use efficiency was increased by 12%. Although harvest index was unaffected, these increases in the physiological determinants of yield by elevated CO2 resulted in a 14% increase in seed yield.
|
8 |
Explaining temporal variations in soil respiration rates and delta<sup>13</sup>C in coniferous forest ecosystemsComstedt, Daniel January 2008 (has links)
<p>Soils of Northern Hemisphere forests contain a large part of the global terrestrial carbon (C) pool. Even small changes in this pool can have large impact on atmospheric [CO2] and the global climate. Soil respiration is the largest terrestrial C flux to the atmosphere and can be divided into autotrophic (from roots, mycorrhizal hyphae and associated microbes) and heterotrophic (from decomposers of organic material) respiration. It is therefore crucial to establish how the two components will respond to changing environmental factors. In this thesis I studied the effect of elevated atmospheric [CO2] (+340 ppm, <sup>13</sup>C-depleted) and elevated air temperature (2.8-3.5 oC) on soil respiration in a whole-tree chamber (WTC) experiment conducted in a boreal Norway spruce forest. In another spruce forest I used multivariate modelling to establish the link between day-to-day variations in soil respiration rates and its δ<sup>13</sup>C, and above and below ground abiotic conditions. In both forests, variation in δ<sup>13</sup>C was used as a marker for autotrophic respiration. A trenching experiment was conducted in the latter forest in order to separate the two components of soil respiration. The potential problems associated with the trenching, increased root decomposition and changed soil moisture conditions were handled by empirical modelling. The WTC experiment showed that elevated [CO2] but not temperature resulted in 48 to 62% increased soil respiration rates. The CO2-induced increase was in absolute numbers relatively insensitive to seasonal changes in soil temperature and data on δ<sup>13</sup>C suggest it mostly resulted from increased autotrophic respiration. From the multivariate modelling we observed a strong link between weather (air temperature and vapour pressure deficit) and the day-to-day variation of soil respiration rate and its δ<sup>13</sup>C. However, the tightness of the link was dependent on good weather for up to a week before the respiration sampling. Changes in soil respiration rates showed a lag to weather conditions of 2-4 days, which was 1-3 days shorter than for the δ<sup>13</sup>C signal. We hypothesised to be due to pressure concentration waves moving in the phloem at higher rates than the solute itself (i.e., the δ<sup>13</sup>C–label). Results from the empirical modelling in the trenching experiment show that autotrophic respiration contributed to about 50% of total soil respiration, had a great day-to-day variation and was correlated to total soil respiration while not to soil temperature or soil moisture. Over the first five months after the trenching, an estimated 45% of respiration from the trenched plots was an artefact of the treatment. Of this, 29% was a water difference effect and 16% resulted from root decomposition. In conclusion, elevated [CO2] caused an increased C flux to the roots but this C was rapidly respired and has probably not caused changes in the C stored in root biomass or in soil organic matter in this N-limited forest. Autotrophic respiration seems to be strongly influenced by the availability of newly produced substrates and rather insensitive to changes in soil temperature. Root trenching artefacts can be compensated for by empirical modelling, an alternative to the sequential root harvesting technique.</p>
|
9 |
Effects of earthworms and tree species (Fagus sylvatica L., Fraxinus excelsior L.) on greenhouse trace gas fluxes in mixed deciduous broad-leaved forestsSchützenmeister, Klaus 09 April 2014 (has links)
No description available.
|
10 |
Explaining temporal variations in soil respiration rates and delta13C in coniferous forest ecosystemsComstedt, Daniel January 2008 (has links)
Soils of Northern Hemisphere forests contain a large part of the global terrestrial carbon (C) pool. Even small changes in this pool can have large impact on atmospheric [CO2] and the global climate. Soil respiration is the largest terrestrial C flux to the atmosphere and can be divided into autotrophic (from roots, mycorrhizal hyphae and associated microbes) and heterotrophic (from decomposers of organic material) respiration. It is therefore crucial to establish how the two components will respond to changing environmental factors. In this thesis I studied the effect of elevated atmospheric [CO2] (+340 ppm, 13C-depleted) and elevated air temperature (2.8-3.5 oC) on soil respiration in a whole-tree chamber (WTC) experiment conducted in a boreal Norway spruce forest. In another spruce forest I used multivariate modelling to establish the link between day-to-day variations in soil respiration rates and its δ13C, and above and below ground abiotic conditions. In both forests, variation in δ13C was used as a marker for autotrophic respiration. A trenching experiment was conducted in the latter forest in order to separate the two components of soil respiration. The potential problems associated with the trenching, increased root decomposition and changed soil moisture conditions were handled by empirical modelling. The WTC experiment showed that elevated [CO2] but not temperature resulted in 48 to 62% increased soil respiration rates. The CO2-induced increase was in absolute numbers relatively insensitive to seasonal changes in soil temperature and data on δ13C suggest it mostly resulted from increased autotrophic respiration. From the multivariate modelling we observed a strong link between weather (air temperature and vapour pressure deficit) and the day-to-day variation of soil respiration rate and its δ13C. However, the tightness of the link was dependent on good weather for up to a week before the respiration sampling. Changes in soil respiration rates showed a lag to weather conditions of 2-4 days, which was 1-3 days shorter than for the δ13C signal. We hypothesised to be due to pressure concentration waves moving in the phloem at higher rates than the solute itself (i.e., the δ13C–label). Results from the empirical modelling in the trenching experiment show that autotrophic respiration contributed to about 50% of total soil respiration, had a great day-to-day variation and was correlated to total soil respiration while not to soil temperature or soil moisture. Over the first five months after the trenching, an estimated 45% of respiration from the trenched plots was an artefact of the treatment. Of this, 29% was a water difference effect and 16% resulted from root decomposition. In conclusion, elevated [CO2] caused an increased C flux to the roots but this C was rapidly respired and has probably not caused changes in the C stored in root biomass or in soil organic matter in this N-limited forest. Autotrophic respiration seems to be strongly influenced by the availability of newly produced substrates and rather insensitive to changes in soil temperature. Root trenching artefacts can be compensated for by empirical modelling, an alternative to the sequential root harvesting technique.
|
Page generated in 0.116 seconds