Spelling suggestions: "subject:"roots off polynomials"" "subject:"roots oof polynomials""
1 |
Roots of polynomials and their connectionsWardlaw, Cathy Jo 05 January 2011 (has links)
In the study of mathematics, one of the most useful, relevant topics explored in secondary mathematics remains the zeros of polynomials. This paper will present various ways to explore this topic while preserving the fundamental concept as a whole. In addition, this paper will reveal some distinct relationships between roots and their behavior within the different branches of mathematics.
The purpose of this paper is to show how this topic can be inserted at key points in the developmental curriculum to preserve the autonomy of this vital mathematical concept, allowing students to experience the behavior and value of this topic in a variety of contexts. / text
|
2 |
Resolubilidade de polinômios: da teoria ao ensino-aprendizagem / Solvability of polynomials: from theory to teaching-learning processSilva, Edson Vander da 26 January 2018 (has links)
Neste trabalho, estudamos polinômios e equações polinomiais, apresentando orientações dos Parâmetros Curriculares Nacionais e informações de como alguns livros didáticos abordam o tema quanto ao tratamento, à metodologia e à priorização no planejamento escolar. Considerando polinômios com coeficientes reais ou complexos, buscamos condições sobre os coeficientes para que tais polinômios tenham raízes. Refletimos sobre como os professores de Matemática podem tratar o tema em sala de aula para obter resultados positivos e tornar a aprendizagem mais atrativa. Abordamos diversos resultados, como o Teorema do Resto, o dispositivo prático de Briot-Ruffini, o Teorema da Decomposição, as relações de Girard, o Teorema das Raízes Racionais, o Teorema Fundamental da Álgebra e as fórmulas de resolução de equações polinomiais por radicais até o quarto grau. Apresentamos uma abordagem para sala de aula com a utilização de um recurso computacional didático e instrumento de avaliação diferenciado. / In this dissertation, we study polynomials and polynomial equations, presenting guidelines from the National Curricular Parameters and information on how some textbooks discuss the topic regarding the treatment, the methodology and the prioritization in school planning. Considering polynomials with real or complex coefficients, we seek conditions on these coefficients so that we ensure that these polynomials have roots. We reflect on how Math teachers can address the topic in the classroom in order to get positive results making the learning more attractive. We address several results such as the Polynomial Remainder Theorem, the Briot-Ruffinis practical rule, the Decomposition Theorem, the Girards relations, the Rational Roots Theorem, the Fundamental Theorem of Algebra and the resolution formulas for polynomial equations by radicals up to the fourth degree. We present a lesson plan with the use of a teaching computational resource and differentiated evaluation tool.
|
3 |
Equações polinomiais / Polynomial equationsCarraschi, Jonas Eduardo 27 March 2014 (has links)
Estudamos neste trabalho as equações polinomiais em sua abrangência: quadráticas, cúbicas e quárticas por diversos métodos clássicos, a limitação das raízes, resultados sobre equações polinomiais com coeficientes reais e inteiros, entre outros / We studied in this work polynomial equations in a wide reach: quadratic, cubic and quartic polynomials by several classical methods, the boundness of roots, results about polynomial equations with real and integer coefficients, among other results
|
4 |
Equações polinomiais / Polynomial equationsJonas Eduardo Carraschi 27 March 2014 (has links)
Estudamos neste trabalho as equações polinomiais em sua abrangência: quadráticas, cúbicas e quárticas por diversos métodos clássicos, a limitação das raízes, resultados sobre equações polinomiais com coeficientes reais e inteiros, entre outros / We studied in this work polynomial equations in a wide reach: quadratic, cubic and quartic polynomials by several classical methods, the boundness of roots, results about polynomial equations with real and integer coefficients, among other results
|
5 |
Resolubilidade de polinômios: da teoria ao ensino-aprendizagem / Solvability of polynomials: from theory to teaching-learning processEdson Vander da Silva 26 January 2018 (has links)
Neste trabalho, estudamos polinômios e equações polinomiais, apresentando orientações dos Parâmetros Curriculares Nacionais e informações de como alguns livros didáticos abordam o tema quanto ao tratamento, à metodologia e à priorização no planejamento escolar. Considerando polinômios com coeficientes reais ou complexos, buscamos condições sobre os coeficientes para que tais polinômios tenham raízes. Refletimos sobre como os professores de Matemática podem tratar o tema em sala de aula para obter resultados positivos e tornar a aprendizagem mais atrativa. Abordamos diversos resultados, como o Teorema do Resto, o dispositivo prático de Briot-Ruffini, o Teorema da Decomposição, as relações de Girard, o Teorema das Raízes Racionais, o Teorema Fundamental da Álgebra e as fórmulas de resolução de equações polinomiais por radicais até o quarto grau. Apresentamos uma abordagem para sala de aula com a utilização de um recurso computacional didático e instrumento de avaliação diferenciado. / In this dissertation, we study polynomials and polynomial equations, presenting guidelines from the National Curricular Parameters and information on how some textbooks discuss the topic regarding the treatment, the methodology and the prioritization in school planning. Considering polynomials with real or complex coefficients, we seek conditions on these coefficients so that we ensure that these polynomials have roots. We reflect on how Math teachers can address the topic in the classroom in order to get positive results making the learning more attractive. We address several results such as the Polynomial Remainder Theorem, the Briot-Ruffinis practical rule, the Decomposition Theorem, the Girards relations, the Rational Roots Theorem, the Fundamental Theorem of Algebra and the resolution formulas for polynomial equations by radicals up to the fourth degree. We present a lesson plan with the use of a teaching computational resource and differentiated evaluation tool.
|
Page generated in 0.0526 seconds