Spelling suggestions: "subject:"rossby have"" "subject:"rossby wave""
21 |
The impact of tropical sea surface temperature perturbations on atmospheric circulation over north Canada and GreenlandMcCrystall, Michelle Roisin January 2018 (has links)
Identifying the drivers of Arctic climate variability is essential for understanding the recent rapid changes in local climate and determining the mechanisms that cause them. Remote tropical sea surface temperatures (SST) have been identified in previous studies as having contributed to the recent positive trends in surface temperature and geopotential height at 200 hPa over north Canada and Greenland (1979-2012) through poleward propagating Rossby waves. However, the source and direction of wave propagation on to north Canada and Greenland (NCG) differs across climate datasets indicating that there are still uncertainties surrounding the mechanisms for how the tropics influence the NCG climate. This thesis aims to further investigate the robustness of the trends over NCG and understand how circulation in this region responds to imposed tropical SST perturbations. The eddy 200 hPa geopotential height (Z200) trends over NCG are assessed in a number of different datasets and compared to the response of eddy Z200 over NCG to imposed tropical SST perturbations in a number of sensitivity studies using the HadGEM3 atmosphere-only model. These model experiments are forced with observed differences in SSTs from the beginning and end of the satellite record (1979-1988 and 2003-2012), with spatial perturbations for [i] the entire tropics, [ii] global SSTs, [iii] the tropical Pacific only, [iv] the tropical Atlantic SST only, [v] the tropical Indian Ocean only. The positive spatial trends of eddy Z200 over NCG from ERA-Interim reanalysis is largely captured in ensemble means of two available climate datasets, UPSCALE and AMIP, indicating that this is a robust climate pattern, however, these trends appear to be stronger in the latter part of the record specifically over the UPSCALE period (1985 to 2011). The model sensitivity studies show that a negative eddy Z200 anomaly over NCG was found in response to all imposed tropical SST perturbations (2003-2012) relative to a background state (1979-1988). This was due a stationary trough over the region that was able to intensify in response to a lack of a strong anomalous wave forcing from changes in mid-tropospheric temperature and zonal winds. The forcing from the tropical Atlantic, relative to the other tropical ocean basins, resulted in the largest eddy Z200 response over NCG, indicating its dominance in forcing the large scale tropical signal. The influence of extratropical SST perturbations relative to tropical SST perturbations were also investigated and it was demonstrated that this negative anomaly is largely driven by the change in tropical sea surface temperatures.
|
22 |
Linear and Nonlinear Motion of a Barotropic VortexGonzalez, Israel 25 February 2014 (has links)
The linear Barotropic Non-Divergent simulation of a vortex on a beta plane is consistent with Willoughby’s earlier shallow-water divergent results in that it produced an unbounded accelerating westward and poleward motion without an asymptotic limit. However, Montgomery’s work which yielded finite linear drift speeds for his completely cyclonic vortex was inconsistent with ours. The nonlinearly-forced streamfunction exhibited a beta-gyre like structure, but with opposite polarity phase to the linear gyres. Utilization of the linear model with time-dependent, but otherwise beta-like, forcing revealed increasing magnitude and phase reversal in the neighborhood of a low cyclonic frequency. Here, the mean bounded vortex has an outer waveguide that supports Vortex Rossby Wave propagation that is faster than the mean flow and confined to a very narrow band of frequencies between zero and the Vortex Rossby Wave cutoff. The low frequency waves constitute the beta-gyre mode described previously by Willoughby.
|
23 |
Tides, Rossby and Kelvin waves simulated with the COMMA-LIM ModelFröhlich, Kristina, Pogoreltsev, Alexander, Jacobi, Christoph 18 January 2017 (has links)
A 48-layer version of the COMMA-LIM (Cologne Model of the Middle Atmosphere – Leipzig Institute for Meteorology) three-dimensional global mechanistic model of the Earth\''s atmosphere from 0 km to 135 km with logarithmic pressure height coordinates was developed. The model is capable of reproducing the global structures and propagation of different planetary waves in the middle atmosphere. The contribution of gravity waves, tides, Rossby and Kelvin waves into the zonally averaged momentum budget of the mesosphere / lower thermosphere region has been investigated. / Eine neue Version des COMMA-LIM (Cologne Model of the Middle Atmosphere – Leipzig Institute for Meteorology) wurde im Zusammenhang mit der Erhöhung der vertikalen Schichtauflösung entwickelt. Das COMMA ist ein dreidimensionales globales mechanistisches Modell der Erdatmosphäre mit einer Ausdehnung von ca. 0 – 135 km in logarithmischen Druckkoordinaten. Damit können globale Eigenschaften der mittleren Atmosphäre sowie die Ausbreitung verschiedener planetarer Wellen nachvollzogen werden. Die Beiträge der Schwerewellen, thermischer Gezeiten, Rossby und Kelvin Wellen zur zonal gemitteltem Impulsbalance der Mesosphäre und unteren Thermosphäre wurden untersucht.
|
24 |
Intensification rapide des cyclones tropicaux du sud-ouest de l’océan Indien (SWIO) : dynamique interne et influences externes / Tropical Cyclone rapid intensification in the southwest Indian ocean : internal processes and external influencesLeroux, Marie-Dominique 13 December 2012 (has links)
Dans un contexte international, la prévision d'intensité des cyclones tropicaux connaît encore de graves déficiences tandis que la prévision de trajectoire de ces phénomènes météorologiques extrêmes s'est grandement améliorée ces dernières décennies. Une source d'erreur pour la prévision d'intensité est le manque de connaissance des processus physiques qui régissent l'évolution de la structure et de l'intensité des cyclones. Cette thèse, proposée dans le cadre des responsabilités du Centre Météorologique Régional Spécialisé (CMRS) de la Réunion et des axes de recherche du LACy et du CNRM, a pour but d'améliorer la prévision numérique et la compréhension des mécanismes de changement de structure et d'intensité des cyclones dans le sud-ouest de l'océan Indien. On observe statistiquement dans le bassin de fréquents déferlements d'ondes de Rossby qui correspondent à une intrusion des talwegs d'altitude depuis les moyennes latitudes vers les régions où évoluent les cyclones. Ces déferlements advectent dans la troposphère tropicale de l'air d'origine stratosphérique à fort tourbillon potentiel (PV). Le cœur d'un cyclone tropical étant caractérisé par un vortex cyclonique de fort PV, il est donc légitime de se demander si de tels talwegs sont capables de « nourrir » un cyclone en déferlant jusqu'à lui, et l'intensifier par superposition de PV. D'un autre côté, l'approche d'un talweg est associée à d'autres facteurs pouvant jouer en défaveur d'une intensification, comme un fort cisaillement vertical de vent. L'étude de processus est réalisée sur le cyclone Dora (2007) avec le modèle opérationnel du CMRS sur le bassin, Aladin-Réunion. Ce modèle hydrostatique à aire limitée bénéficie d'une résolution horizontale de 8 km et de son propre schéma d'assimilation 3Dvar avec bogus de vent. Un tel bogus permet d'affiner la structure du cyclone à l'instant initial en ajoutant des observations de vent déduites d'un profil analytique et des paramètres de structure du cyclone estimés par les images satellites. Des diagnostiques sur les variables thermodynamiques en sortie de modèle montrent que la phase d'intensification rapide de Dora est bien associée à l'advection de tourbillon potentiel (PV) en provenance du talweg. Bien que fortement cisaillé, le système parvient à s'intensifier grâce à la forte inclinaison du talweg qui advecte du PV au cœur du cyclone en 2 temps et à 2 niveaux (haute et moyenne troposphère). Lorsque le talweg est au plus proche du cyclone, il force un processus dynamique interne appelé « cycle de remplacement du mur de l'œil ». On observe une inclinaison et un renforcement des vitesses verticales à l'extérieur du mur de l'œil principal, associé à une accélération de la circulation cyclonique tangentielle par advection de moment angulaire sur toute l'épaisseur de la troposphère dans cette zone annulaire (mis en évidence par les flux d'Eliassen-Palm). Un second maximum de vent relatif apparaît alors et une deuxième phase d'intensification rapide s'ensuit avec la contraction du mur secondaire. Le forçage de processus internes par une influence externe (un talweg) semble donc être le moteur de l'intensification rapide de Dora dans un environnement cisaillé, et potentiellement celui d'autres cyclones dans le bassin qui sont approchés par des talwegs d'altitude. Les prévisionnistes du CMRS sont invités à surveiller les champs de PV de tels systèmes, en attendant que de plus amples diagnostiques soient réalisés avec l'outil d'inversion du tourbillon potentiel développé sur le modèle global Arpège. / Despite significant improvements in Tropical Cyclone (TC) track forecasts over the past few decades, anticipating the sudden intensity changes of TCs remains a major operational issue. The main purpose of this thesis is to analyze TC rapid intensification processes in relation with external forcing induced by upper-level troughs originating from the mid-latitudes. The impact of initial storm structure on storm evolution and prediction is also documented. An objective definition for rapid intensification in the southwest Indian Ocean is first proposed. The location and frequency of TC-trough interactions are identified, as well as TC-trough arrangements conducive to TC intensification. An interesting study case, TC Dora (2007), is chosen to run numerical simulations initialized with synthetic TC observations blended in a global analysis. The simulated TC-trough interaction is intricate with potential vorticity (PV) advection from the trough into the TC core at mid and upper levels. Vortex intensification first occurs inside the eyewall and results from PV superposition. Further intensification is associated with a subsequent secondary eyewall formation triggered by external forcing from the trough. The numerical model is able to reproduce the main features associated with outer eyewall spin-up, inner eyewall spin-down, and their effects on vortex intensity changes. Another numerical study examines typhoons in the northwest Pacific and demonstrates the critical role played by initial vortex structure in TC track and intensity prediction. Upgrading the initial specification of a TC inner-core structure in numerical models is recommended for future TC prediction improvements.
|
Page generated in 0.0419 seconds