Spelling suggestions: "subject:"brotation curves"" "subject:"brotation purves""
1 |
Spiral galaxy HI models, rotation curves and kinematic classificationsWiegert, Theresa B. V. 19 January 2011 (has links)
Although galaxy interactions cause dramatic changes, galaxies also continue to form stars and evolve when they are isolated. The dark matter (DM) halo may influence this evolution since it generates the rotational behaviour of galactic disks which could affect local conditions in the gas. Therefore we study neutral hydrogen kinematics of non-interacting, nearby spiral galaxies, characterising their rotation curves (RC) which probe the DM halo; delineating kinematic classes of galaxies; and investigating relations between these classes and galaxy properties such as disk size and star formation rate (SFR).
To generate the RCs, we use GalAPAGOS (by J. Fiege). My role was to test and help drive the development of this software, which employs a powerful genetic algorithm, constraining 23 parameters while using the full 3D data cube as input. The RC is here simply described by a tanh-based function which adequately traces the global RC behaviour. Extensive testing on artificial galaxies show that the kinematic properties of galaxies with inclination >40 degrees, including edge-on galaxies, are found reliably.
Using a hierarchical clustering algorithm on parametrised RCs from 79 galaxies culled from literature generates a preliminary scheme consisting of five classes. These are based on three parameters: maximum rotational velocity, turnover radius and outer slope of the RC.
To assess the relationship between DM content and the kinematic classes, we generate mass models for 10 galaxies from the THINGS and WHISP surveys, and J. Irwin's sample. In most cases mass models using GalAPAGOS RCs were similar to those using traditional ``tilted-ring'' method RCs.
The kinematic classes are mainly distinguished by their rotational velocity. We confirm correlations between increasing velocity and B-magnitude, optical disk size, and find earlier type galaxies among the strong rotators. SFR also increases with maximum rotational velocity. Given our limited subsample, we cannot discern a trend of velocity with DM halo properties such as M_halo/M_baryon.
Using this strategy on upcoming large databases should reveal relationships between the DM halo and our kinematic classification scheme. If NGC 2841, NGC 3521 and NGC 5055 are understood to have declining RC after further investigation, this cannot be explained by the usual morphology scenarios.
|
2 |
Spiral galaxy HI models, rotation curves and kinematic classificationsWiegert, Theresa B. V. 19 January 2011 (has links)
Although galaxy interactions cause dramatic changes, galaxies also continue to form stars and evolve when they are isolated. The dark matter (DM) halo may influence this evolution since it generates the rotational behaviour of galactic disks which could affect local conditions in the gas. Therefore we study neutral hydrogen kinematics of non-interacting, nearby spiral galaxies, characterising their rotation curves (RC) which probe the DM halo; delineating kinematic classes of galaxies; and investigating relations between these classes and galaxy properties such as disk size and star formation rate (SFR).
To generate the RCs, we use GalAPAGOS (by J. Fiege). My role was to test and help drive the development of this software, which employs a powerful genetic algorithm, constraining 23 parameters while using the full 3D data cube as input. The RC is here simply described by a tanh-based function which adequately traces the global RC behaviour. Extensive testing on artificial galaxies show that the kinematic properties of galaxies with inclination >40 degrees, including edge-on galaxies, are found reliably.
Using a hierarchical clustering algorithm on parametrised RCs from 79 galaxies culled from literature generates a preliminary scheme consisting of five classes. These are based on three parameters: maximum rotational velocity, turnover radius and outer slope of the RC.
To assess the relationship between DM content and the kinematic classes, we generate mass models for 10 galaxies from the THINGS and WHISP surveys, and J. Irwin's sample. In most cases mass models using GalAPAGOS RCs were similar to those using traditional ``tilted-ring'' method RCs.
The kinematic classes are mainly distinguished by their rotational velocity. We confirm correlations between increasing velocity and B-magnitude, optical disk size, and find earlier type galaxies among the strong rotators. SFR also increases with maximum rotational velocity. Given our limited subsample, we cannot discern a trend of velocity with DM halo properties such as M_halo/M_baryon.
Using this strategy on upcoming large databases should reveal relationships between the DM halo and our kinematic classification scheme. If NGC 2841, NGC 3521 and NGC 5055 are understood to have declining RC after further investigation, this cannot be explained by the usual morphology scenarios.
|
3 |
Dark and luminous matter in bright spiral galaxiesKassin, Susan Alice Joan 12 October 2004 (has links)
No description available.
|
4 |
The Tully-Fisher Relation, its residuals, and a comparison to theoretical predictions for a broadly selected sample of galaxiesPizagno, James Lawrence, II 13 September 2006 (has links)
No description available.
|
5 |
An Investigation of Neutral Hydrogen in Three Edge-on Spiral GalaxiesKennedy, HEATHER 04 September 2009 (has links)
We present the results of a new and high sensitivity study of the neutral hydrogen (HI) gas in three early type edge-on spiral galaxies, NGC 4157, NGC 3600 and NGC 2683. All three galaxies reveal HI disks that extend nearly or more than twice the length of the optical disk, which ubiquitously reveal asymmetries and warps. We model each galaxy using a three-dimensional kinematic model to derive the empirical parameters of the density distribution functions and rotation curves. A Gaussian function is unanimously found to best represent the density distribution in the plane of the galaxies. We also find that there is in fact a thick HI disk extending into the halo of two of three of these galaxies with scale heights on kpc. scales. This gas suggests the existence of two separate widespread components: a thin, high intensity disk component, normally rotating, and a vast, low intensity halo component, rotating at slower velocities with respect to the disk. This vertical velocity gradient is perhaps our most significant finding in addition to the discovery of the two new HI halos. We also find an unevenly distributed small-scale component of the gas in the form of shell-like and filamentary structures that extend from the disk into the halo. In all three systems we find unique kinematic and structural peculiarities including an HI disk extending four times the optical disk, a declining rotation curve, a companion, expanding bubbles, disk warps, etc. Several physical parameters are derived such as neutral hydrogen and dynamic masses, systemic velocities, HI radii, HI halo masses, etc. All of our findings are investigated and discussed in depth for each of the three galaxies. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-09-03 19:47:31.786
|
6 |
Modified Gravity and the Phantom of Dark MatterBrownstein, Joel Richard January 2009 (has links)
Astrophysical data analysis of the weak-field predictions support the claim that modified gravity (MOG) theories provide a self-consistent, scale-invariant, universal description of galaxy rotation curves, without the need of non-baryonic dark matter. Comparison to the predictions of Milgrom's modified dynamics (MOND) provide a best-fit and experimentally determined universal value of the MOND acceleration parameter. The predictions of the modified gravity theories are compared to the predictions of cold non-baryonic dark matter (CDM), including a constant density core-modified fitting formula, which produces excellent fits to galaxy rotation curves including the low surface brightness and dwarf galaxies.
Upon analysing the mass profiles of clusters of galaxies inferred from X-ray luminosity measurements, from the smallest nearby clusters to the largest of the clusters of galaxies, it is shown that while MOG provides consistent fits, MOND does not fit the observed shape of cluster mass profiles for any value of the MOND acceleration parameter. Comparison to the predictions of CDM confirm that whereas the Navarro-Frenk-White (NFW) fitting formula does not fit the observed shape of galaxy cluster mass profiles, the core-modified dark matter fitting formula provides excellent best-fits, supporting the hypothesis that baryons are dynamically important in the distribution of dark matter halos.
|
7 |
Modified Gravity and the Phantom of Dark MatterBrownstein, Joel Richard January 2009 (has links)
Astrophysical data analysis of the weak-field predictions support the claim that modified gravity (MOG) theories provide a self-consistent, scale-invariant, universal description of galaxy rotation curves, without the need of non-baryonic dark matter. Comparison to the predictions of Milgrom's modified dynamics (MOND) provide a best-fit and experimentally determined universal value of the MOND acceleration parameter. The predictions of the modified gravity theories are compared to the predictions of cold non-baryonic dark matter (CDM), including a constant density core-modified fitting formula, which produces excellent fits to galaxy rotation curves including the low surface brightness and dwarf galaxies.
Upon analysing the mass profiles of clusters of galaxies inferred from X-ray luminosity measurements, from the smallest nearby clusters to the largest of the clusters of galaxies, it is shown that while MOG provides consistent fits, MOND does not fit the observed shape of cluster mass profiles for any value of the MOND acceleration parameter. Comparison to the predictions of CDM confirm that whereas the Navarro-Frenk-White (NFW) fitting formula does not fit the observed shape of galaxy cluster mass profiles, the core-modified dark matter fitting formula provides excellent best-fits, supporting the hypothesis that baryons are dynamically important in the distribution of dark matter halos.
|
8 |
Lorentz-violating dark matterMondragon, Antonio Richard 15 May 2009 (has links)
Observations from the 1930s until the present have established the existence of
dark matter with an abundance that is much larger than that of luminous matter.
Because none of the known particles of nature have the correct properties to be
identified as the dark matter, various exotic candidates have been proposed. The
neutralino of supersymmetric theories is the most promising example. Such cold dark
matter candidates, however, lead to a conflict between the standard simulations of
the evolution of cosmic structure and observations. Simulations predict excessive
structure formation on small scales, including density cusps at the centers of galaxies,
that is not observed. This conflict still persists in early 2007, and it has not
yet been convincingly resolved by attempted explanations that invoke astrophysical
phenomena, which would destroy or broaden all small scale structure. We have
investigated another candidate that is perhaps more exotic: Lorentz-violating dark
matter, which was originally motivated by an unconventional fundamental theory, but
which in this dissertation is defined as matter which has a nonzero minimum velocity.
Furthermore, the present investigation evolved into the broader goal of exploring
the properties of Lorentz-violating matter and the astrophysical consequences – a
subject which to our knowledge has not been previously studied. Our preliminary
investigations indicated that this form of matter might have less tendency to form
small-scale structure. These preliminary calculations certainly established that Lorentz-violating matter which always moves at an appreciable fraction of the speed
of light will bind less strongly. However, the much more thorough set of studies
reported here lead to the conclusion that, although the binding energy is reduced,
the small-scale structure problem is not solved by Lorentz-violating dark matter. On
the other hand, when we compare the predictions of Lorentz-violating dynamics with
those of classical special relativity and general relativity, we find that differences might
be observable in the orbital motions of galaxies in a cluster. For example, galaxies –
which are composed almost entirely of dark matter – observed to have enlarged orbits
about the cluster center of mass may be an indication of Lorentz violation.
|
9 |
Multi-messenger constraints and pressure from dark matter annihilation into electron-positron pairsWechakama, Maneenate January 2013 (has links)
Despite striking evidence for the existence of dark matter from astrophysical observations, dark matter has still escaped any direct or indirect detection until today. Therefore a proof for its existence and the revelation of its nature belongs to one of the most intriguing challenges of nowadays cosmology and particle physics. The present work tries to investigate the nature of dark matter through indirect signatures from dark matter annihilation into electron-positron pairs in two different ways, pressure from dark matter annihilation and multi-messenger constraints on the dark matter annihilation cross-section. We focus on dark matter annihilation into electron-positron pairs and adopt a model-independent approach, where all the electrons and positrons are injected with the same initial energy E_0 ~ m_dm*c^2. The propagation of these particles is determined by solving the diffusion-loss equation, considering inverse Compton scattering, synchrotron radiation, Coulomb collisions, bremsstrahlung, and ionization.
The first part of this work, focusing on pressure from dark matter annihilation, demonstrates that dark matter annihilation into electron-positron pairs may affect the observed rotation curve by a significant amount. The injection rate of this calculation is constrained by INTEGRAL, Fermi, and H.E.S.S. data. The pressure of the relativistic electron-positron gas is computed from the energy spectrum predicted by the diffusion-loss equation. For values of the gas density and magnetic field that are representative of the Milky Way, it is estimated that the pressure gradients are strong enough to balance gravity in the central parts if E_0 < 1 GeV. The exact value depends somewhat on the astrophysical parameters, and it changes dramatically with the slope of the dark matter density profile. For very steep slopes, as those expected from adiabatic contraction, the rotation curves of spiral galaxies would be affected on kiloparsec scales for most values of E_0. By comparing the predicted rotation curves with observations of dwarf and low surface brightness galaxies, we show that the pressure from dark matter annihilation may improve the agreement between theory and observations in some cases, but it also imposes severe constraints on the model parameters (most notably, the inner slope of the halo density profile, as well as the mass and the annihilation cross-section of dark matter particles into electron-positron pairs).
In the second part, upper limits on the dark matter annihilation cross-section into electron-positron pairs are obtained by combining observed data at different wavelengths (from Haslam, WMAP, and Fermi all-sky intensity maps) with recent measurements of the electron and positron spectra in the solar neighbourhood by PAMELA, Fermi, and H.E.S.S.. We consider synchrotron emission in the radio and microwave bands, as well as inverse Compton scattering and final-state radiation at gamma-ray energies. For most values of the model parameters, the tightest constraints are imposed by the local positron spectrum and synchrotron emission from the central regions of the Galaxy. According to our results, the annihilation cross-section should not be higher than the canonical value for a thermal relic if the mass of the dark matter candidate is smaller than a few GeV. In addition, we also derive a stringent upper limit on the inner logarithmic slope α of the density profile of the Milky Way dark matter halo (α < 1 if m_dm < 5 GeV, α < 1.3 if m_dm < 100 GeV and α < 1.5 if m_dm < 2 TeV) assuming a dark matter annihilation cross-section into electron-positron pairs (σv) = 3*10^−26 cm^3 s^−1, as predicted for thermal relics from the big bang. / Trotz vieler Hinweise auf die Existenz von dunkler Materie durch astrophysikalische Beobachtungen hat sich die dunkle Materie bis heute einem direkten oder indirekten Nachweis entzogen. Daher gehrt der Nachweis ihrer Existenz und die Enthüllung ihrer Natur zu einem der faszinierensten Herausforderungen der heutigen Kosmologie und Teilchenphysik. Diese Arbeit versucht die Natur von dunkler Materie durch indirekte Signaturen von der Paarzerstrahlung dunkler Materie in Elektron-Positronpaare auf zwei verschiedene Weisen zu untersuchen, nämlich anhand des Drucks durch die Paarzerstrahlung dunkler Materie und durch Grenzen des Wirkungsquerschnitts für die Paarzerstrahlung dunkler Materie aus verschiedenen Beobachtungsbereichen. Wir konzentrieren uns dabei auf die Zerstrahlung dunkler Materie in Elektron-Positron-Paare und betrachten einen modellunabhängigen Fall, bei dem alle Elektronen und Positronen mit der gleichen Anfangsenergie E_0 ~ m_dm*c^2 injiziert werden. Die Fortbewegung dieser Teilchen wird dabei bestimmt durch die Lösung der Diffusions-Verlust-Gleichung unter Berücksichtigung von inverser Compton-Streuung, Synchrotronstrahlung, Coulomb-Streuung, Bremsstrahlung und Ionisation.
Der erste Teil dieser Arbeit zeigt, dass die Zerstrahlung dunkler Materie in Elektron-Positron-Paare die gemessene Rotationskurve signifikant beeinflussen kann. Die Produktionsrate ist dabei durch Daten von INTEGRAL, Fermi und H.E.S.S. begrenzt. Der Druck des relativistischen Elektron-Positron Gases wird aus dem Energiespektrum errechnet, welches durch die Diffusions-Verlust-Gleichung bestimmt ist. Für Werte der Gasdichte und des magnetischen Feldes, welche für unsere Galaxie repräsentativ sind, lässt sich abschätzen, dass für E_0 < 1 GeV die Druckgradienten stark genug sind, um Gravitationskräfte auszugleichen. Die genauen Werte hängen von den verwendeten astrophysikalischen Parametern ab, und sie ändern sich stark mit dem Anstieg des dunklen Materie-Profils. Für sehr große Anstiege, wie sie für adiabatische Kontraktion erwartet werden, werden die Rotationskurven von Spiralgalaxien auf Skalen von einegen Kiloparsek für die meisten Werte von E_0 beeinflusst. Durch Vergleich der erwarteten Rotationskurven mit Beobachtungen von Zwerggalaxien und Galaxien geringer Oberflächentemperatur zeigen wir, dass der Druck von Zerstrahlung dunkler Materie die Übereinstimmung von Theorie und Beobachtung in einigen Fällen verbessern kann. Aber daraus resultieren auch starke Grenzen für die Modellparameter - vor allem für den inneren Anstieg des Halo-Dichteprofils, sowie die Masse und den Wirkungsquerschnitt der dunklen Materie-Teilchen.
Im zweiten Teil werden obere Grenzen für die Wirkungsquerschnitte der Zerstrahlung der dunkler Materie in Elektron-Positron-Paare erhalten, indem die beobachteten Daten bei unterschiedlichen Wellenlängen (von Haslam, WMAP und Fermi) mit aktuellen Messungen von Elektron-Positron Spektren in der solaren Nachbarschaft durch PAMELA, Fermi und H.E.S.S. kombiniert werden. Wir betrachten Synchrotronemission bei Radiound Mikrowellenfrequenzen, sowie inverse Compton-Streuung und Final-State-Strahlung bei Energien im Bereich der Gamma-Strahlung. Für die meisten Werte der Modellparameter werden die stärksten Schranken durch das lokale Positron-Spektrum und die Synchrotronemission im Zentrum unser Galaxie bestimmt. Nach diesen Ergebnissen sollte der Wirkungsquerschnitt für die Paarzerstrahlung nicht größer als der kanonische Wert für thermische Relikte sein, wenn die Masse der dunklen Materie-Kandidaten kleiner als einige GeV ist. Zusätzlich leiten wir eine obere Grenze für den inneren logarithmische Anstieg α des Dichteprofiles des dunklen Materie Halos unserer Galaxie ab.
|
10 |
Gravitação com dimensões extras e uma interpretação da matéria escura / Gravity with extra dimensions and an interpretation of dark matterCoimbra-Araújo, Carlos Henrique 14 August 2018 (has links)
Orientador: Patricio Anibal Letelier Sotomayor / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica "Gleb Wataghin" / Made available in DSpace on 2018-08-14T18:55:47Z (GMT). No. of bitstreams: 1
Coimbra-Araujo_CarlosHenrique_D.pdf: 1401888 bytes, checksum: ea7cff271a9dd2f1aba347507e316ac1 (MD5)
Previous issue date: 2009 / Resumo: Neste trabalho é apresentada uma nova abordagem teórica e semifenomenológica acerca do que dimensões extras poderiam representar na explicação do que é a matéria escura. Aqui mostra-se que a gravitação baseada numa ação de Einstein-Hilbert para espaços-tempo com dimensão acima de quatro, produz um termo de força extra nas equações de movimento de um sistema de partículas teste, o que pode ser aplicado ao problema do campo gerado por alguma estrutura autogravitante, como clusters esféricos ou discos, por exemplo.
Tal resultado é explorado no cálculo de configurações que possam mimetizar uma galáxia real. As configurações calculadas são o disco fino - a partir do método de imagens - e também a distribuição isotrópica de Miyamoto-Nagai - que reproduz o comportamento idealizado de uma galáxia espiral graças à estratificação de matéria num bojo central mais um disco galático. Para tais configurações são calculadas as curvas de rotação bem como a sua estabilidade, perfis de densidade e pressão, e mostra-se que no domínio onde as curvas são estáveis há a possibilidade de se reproduzir os resultados observacionais usualmente relacionados à incidência de um halo escuro. Nos modelos apresentados, no entanto, não há inclusão de matéria escura.
O cálculo de lentes gravitacionais para clusters esféricos também é desenvolvido, indicando que as dimensões extras promovem desvios capazes de explicar as anomalias nas observações astronômicas de aglomerados de galáxias.
Os resultados são amplamente discutidos e algumas comparações fenomenológicas são feitas. Dos resultados em estruturas autogravitantes, conclui-se que a presença de dimensões extras (sem matéria escura) é equivalente ao procedimento usual de se adicionar matéria escura às configurações calculadas, o que poderia levar à interpretação de que a matéria escura é apenas o produto de um desconhecimento acerca da natureza do espaço-tempo / Abstract: In the present work it is showed a new theoretical and semiphenomenological approach concerning what extra dimensions could represent to explain the nature of dark matter. Here the gravitation based on an multidimensional Einstein-Hilbert action reveals that an extra force term appears in the equations of motion for a system of test particles, that can be applied for the problem of the field produced by a self gravitating structure, as for instaure spherical clusters or disks.
Such results are explored in the calculation of configurations that mimic real galaxies. The computed configurations are the thin disk - from the inverse method - and also the isotropic distribution of Miyamoto-Nagai - that reproduces the idealized behavior of a disk galaxy thanks to the stratification of matter in a central bulge plus a disk. The rotation curves, the stability, density and pressure profiles are calculated. In the domain where the curves are stable it is possible to reproduce observational results usually related to a dark halo. In present models, however, there is no inclusion of dark matter.
It is also presented the calculation for gravitationallensing of spherical clusters, indicating that extra dimensions promote deviations capable to explain anomalies in the astronomical observation of many galaxy clusters.
The results are widely discussed and some phenomenological comparisons are made. From results for self gravitating objects, one concludes that the presence of extra dimensions (without dark matter) is equivalent to the effect due to addition of dark matter in the calculated configurations. This could lead to the interpretation where dark matter concerns to an unfamiliarity related to the real structure of spacetime / Doutorado / Relatividade e Gravitação / Doutor em Física
|
Page generated in 0.0981 seconds