Spelling suggestions: "subject:"rotordynamic"" "subject:"rotordynamics""
21 |
Modeling and Performance Investigation of a Rotor with Dissimilar Bearing Support SystemLI, YUNLU 04 May 2011 (has links)
No description available.
|
22 |
Rotordynamic and thermal analyses of compliant flexure pivot tilting pad gas bearingsSim, Kyu-Ho 15 May 2009 (has links)
Rotordynamic and thermal analyses of compliant flexure pivot tilting pad gas bearings were performed. First, compliant flexure pivot tilting pad gas bearings with pad radial compliance (CFTPBs) were introduced and designed for high-speed oil-free micro turbomachinery. The pad radial compliance was for accommodation of large rotor growth at high speeds. Parametric studies on pivot offset, preload, and tilting stiffness were performed using non-linear orbit simulations and coast-down simulations for an optimum design. Second, coast-down tests for imbalance response and stability of typical rotor-bearing system with a rigid rotor and two CFTPBs designed from the above design studies were conducted over operating speeds up to 55 krpm. Prediction of synchronous rotordynamic responses was made in terms of critical speed for various imbalance modes by using a rotordynamic analysis software (XLTRC), combined with dynamic force coefficients from the perturbation analysis. For stability analyses, a generalized orbit simulation program was developed considering both the translational and angular rotor motions with two different bearings. Linear stability analyses for the conical vibration mode were also performed by using XLTRC and the perturbation analysis based on the Lund method. Predictions of whirl speed showed good agreement to the tests, but the estimated onset speed of instability appeared lower than the measured instability. Finally, a new thermo-hydrodynamic analysis model of a typical rotor-bearing system with CFTPBs was presented, accompanying linear perturbation analyses to investigate thermal effects on the rotordynamic performance. A numerical procedure was established for solving the generalized Reynolds equation, the 3-D energy equation, and the associated boundary conditions at the pad inlet flow and solid walls (rotor and pad) simultaneously. Parametric studies were conducted on nominal clearance and external load. Nominal clearance showed significant influence on temperature fields, and external load had uneven thermal effects among pads. Case studies with heat flux and temperature boundary conditions on the rotor end surface were performed to simulate various working conditions of the bearing. Large rotor thermal growth due to the high rotor temperature showed noticeable influence on rotordynamic performance by increasing direct stiffness and damping coefficients.
|
23 |
Rotordynamic and thermal analyses of compliant flexure pivot tilting pad gas bearingsSim, Kyu-Ho 15 May 2009 (has links)
Rotordynamic and thermal analyses of compliant flexure pivot tilting pad gas bearings were performed. First, compliant flexure pivot tilting pad gas bearings with pad radial compliance (CFTPBs) were introduced and designed for high-speed oil-free micro turbomachinery. The pad radial compliance was for accommodation of large rotor growth at high speeds. Parametric studies on pivot offset, preload, and tilting stiffness were performed using non-linear orbit simulations and coast-down simulations for an optimum design. Second, coast-down tests for imbalance response and stability of typical rotor-bearing system with a rigid rotor and two CFTPBs designed from the above design studies were conducted over operating speeds up to 55 krpm. Prediction of synchronous rotordynamic responses was made in terms of critical speed for various imbalance modes by using a rotordynamic analysis software (XLTRC), combined with dynamic force coefficients from the perturbation analysis. For stability analyses, a generalized orbit simulation program was developed considering both the translational and angular rotor motions with two different bearings. Linear stability analyses for the conical vibration mode were also performed by using XLTRC and the perturbation analysis based on the Lund method. Predictions of whirl speed showed good agreement to the tests, but the estimated onset speed of instability appeared lower than the measured instability. Finally, a new thermo-hydrodynamic analysis model of a typical rotor-bearing system with CFTPBs was presented, accompanying linear perturbation analyses to investigate thermal effects on the rotordynamic performance. A numerical procedure was established for solving the generalized Reynolds equation, the 3-D energy equation, and the associated boundary conditions at the pad inlet flow and solid walls (rotor and pad) simultaneously. Parametric studies were conducted on nominal clearance and external load. Nominal clearance showed significant influence on temperature fields, and external load had uneven thermal effects among pads. Case studies with heat flux and temperature boundary conditions on the rotor end surface were performed to simulate various working conditions of the bearing. Large rotor thermal growth due to the high rotor temperature showed noticeable influence on rotordynamic performance by increasing direct stiffness and damping coefficients.
|
24 |
Analyse dynamique d'une ligne d'arbre verticale supportée par une butée à patins oscillants / Dynamic analysis of a vertical turbine supported by a tilting pads thrust bearingDenis, Sébastien 19 December 2014 (has links)
Les problèmes vibratoires sont l'une des principales causes des maintenances effectuées sur les turbines de barrages hydroélectrique en France. Dans cette thèse CIFRE, subventionnée par la Division Technique Générale d’Électricité de France à Grenoble, nous voulons étudier numériquement les phénomènes physiques en jeu.Pour cela, chaque partie composant ce type de machine tournante est modélisée : la ligne d'arbre, les accouplements rigides, les paliers hydrodynamiques, la butée hydrodynamique à patins oscillants, les étanchéités et les efforts électromagnétiques. Celui du rotor est basé sur une approche classique 1D, prenant en compte des défauts d'accouplement rigide. Les paliers hydrodynamiques peuvent être alimentés par des rainures hélicoïdales : ceci est pris en compte dans la modélisation des paliers via un changement de variable dans l'équation de Reynolds. Concernant la butée hydrodynamique à patins oscillants, l'équation de Reynolds est explicitée en fonction des paramètres du système (rotor et patins). Un cas test est également présenté afin d'évaluer les différentes approches possibles pour l'intégration dans la modélisation du rotor et pour mieux appréhender la réponse dynamique d'une butée. Les joints d'étanchéités sont modélisés en linéarisant les efforts hydrauliques gouvernés par les équations du "bulk-flow" et sont donc représentés par des coefficients dynamiques de masse, d'amortissement et de raideur. Les efforts électromagnétiques au niveau de l'alternateur sont pris en compte via une formulation analytique des forces d'attraction sur chaque paire de pôles. Cela permet de gérer, par exemple, des défauts d'ovalisation ou de positionnement du stator.Une seconde partie est consacrée à l'étude d'une turbine complète. Y sont présentées différentes études de sensibilités des défauts les plus courants sur ce type de machine, le but étant d'en connaître l'influence sur le comportement dynamique de l'ensemble du rotor. / Vibration problems are one of the main causes leading to maintenances performed on the turbines of hydroelectric power generation systems in France. In this CIFRE dissertation, financed by Division Technique Générale d'Électricité de France in Grenoble, we shall numerically study the physical phenomena involved in turbine vibrations of this kind.Hence, each component of this type of rotating machinery is modeled: the rotor, the rigid coupling, the hydrodynamic bearings, the hydrodynamic tilting pad thrust bearing, the annular seals and the electromagnetic forces. The model of the rotor is based on classical 1D approach taking into account the defects of the rigid coupling. The hydrodynamic bearings can be fed by helicoidally grooves. This feature is taken into account in the numerical model of journal bearing by applying a variable transformation to the Reynolds equation. For the tilting pad thrust bearing, the Reynolds equation takes into account the displacements and the velocities of both the pads and the rotor. A test case is presented for evaluating the different numerical approaches of the tilting pad thrust bearing that can be integrated in a rotordynamic analysis. The annular seals are modeled by using linearized hydraulic efforts (i.e. stiffness, damping and added mass dynamic coefficients) modeled by the "bulk flow" system of equations. The electromagnetic efforts in the alternator are taken into account by using an analytic model of the forces of each pair of poles. This enables to tackle ovalisation or eccentricity defects of the stator.A second part is dedicated to the numerical study of a complete turbine. Different studies dealing with sensitivity analyses of most often-encountered defects of this type of rotating machinery are presented, the goal being to underline their influence on the dynamic behavior of the whole rotor.
|
25 |
Design of high-power ultra-high-speed permanent magnet machineIslam, Md Khurshedul 12 May 2023 (has links) (PDF)
The demand for ultra-high-speed machines (UHSM) is rapidly growing in high-tech industries due to their attractive features. A-mechanically-based-antenna (AMEBA) system is another emerging application of UHSM. It enables portable wireless communication in the radio frequency (RF)-denied environment, which was not possible until recently. The AMEBA system requires a high-power (HP) UHSM for its effective communication performance. However, at the expected rotational speed range of 0.5 to 1 million rpm, the power level of UHSM is limited, and no research effort has succeeded to improve the power level of UHSM.
The design of HP-UHSM is highly iterative, and it presents several critical challenges, unlike low-power UHSM, such as critical-bending-resonance (CBR), strong mutual influence among Multiphysics performances, exponential air-friction loss, and material limitation. When the magnetic loading of the UHSM rotor is increased to improve the power level, the rotor experiences serious mechanical vibration due to the excessive centrifugal forces and CBR. This vibration limits the operation of HP-UHSM and leads to structural breakdown. Furthermore, the design process becomes more critical when it considers the multidisciplinary design constraints and application requirements.
This dissertation proposed a new Multiphysics design method to develop HP-UHSM for critical applications. First, the critical design constraints which prevent increasing the output power of UHSM are investigated. Then, a Multiphysics optimization model is developed by coupling several multidisciplinary analysis modules. This proposed optimization model enables (i) defining multidisciplinary design constraints, (ii) consideration of Multiphysics mutual influence, and (iii) a trade-off analysis between the efficiency and design-safety-margin. The proposed design model adopts the multiphase winding system to effectively increase the electrical loading in the slotless stator. Finally, a 2000 W 500,000 rpm HP-UHSM is optimized for an AMEBA system using the proposed design method.
The optimized 2 kW 500,000 rpm machine prototype and its dynamo setup are built in the laboratory. Extensive finite element simulations and experimental testing results are presented to validate the effectiveness of the proposed design method. The results show that the proposed HP-USHM has 94.5% efficiency, 47 kW/L power density, 30% global design safety margin at the maximum speed and no CBR frequency below 11 kHz.
|
26 |
Damage Detection of Rotors Using Magnetic Force Actuator: Analysis and Experimental VerificationPesch, Alexander Hans January 2008 (has links)
No description available.
|
27 |
STRUCTURAL MODIFICATION OF A COUPLED ROTORDYNAMIC SYSTEM FROM TRANSFER FUNCTIONSBirchfield, Neal Spencer 19 August 2013 (has links)
No description available.
|
28 |
Diagnostics of subsynchronous vibrations in rotating machinery - methodologies to identify potential instabilityKar, Rahul 01 November 2005 (has links)
Rotordynamic instability can be disastrous for the operation of high speed turbomachinery in the industry. Most ??instabilities?? are due to de-stabilizing cross coupled forces from variable fluid dynamic pressure around a rotor component, acting in the direction of the forward whirl and causing subsynchronous orbiting of the rotor. However, all subsynchronous whirling is not unstable and methods to diagnose the potentially unstable kind are critical to the health of the rotor-bearing system. The objective of this thesis is to explore means of diagnosing whether subsynchronous vibrations are benign or have the potential to become unstable. Several methods will be detailed to draw lines of demarcation between the two. Considerable focus of the research has been on subharmonic vibrations induced from non-linear bearing stiffness and the study of vibration signals typical to such cases. An analytical model of a short-rigid rotor with stiffness non-linearity is used for numerical simulations and the results are verified with actual experiments. Orbits filtered at the subsynchronous frequency are shown as a diagnostic tool to indicate benign vibrations as well as ??frequency tracking?? and agreement of the frequency with known eigenvalues. Several test rigs are utilized to practically demonstrate the above conclusions. A remarkable finding has been the possibility of diagnosing instability using the synchronous phase angle. The synchronous phase angle ?? is the angle by which the unbalance vector leads the vibration vector. Experiments have proved that ?? changes appreciably when there is a de-stabilizing cross coupled force acting on the rotor as compared to when there is none. A special technique to calculate the change in ?? with cross-coupling is outlined along with empirical results to exemplify the case. Subsequently, a correlation between the synchronous phase angle and the phase angle measured with most industrial balancing instruments is derived so that the actual measurement of the true phase angle is not a necessity for diagnosis. Requirements of advanced signal analysis techniques have led to the development of an extremely powerful rotordynamic measurement teststand ?? ??LVTRC??. The software was developed in tandem with this thesis project. It is a stand-alone application that can be used for field measurements and analysis by turbomachinery companies.
|
29 |
Diagnostics of subsynchronous vibrations in rotating machinery - methodologies to identify potential instabilityKar, Rahul 01 November 2005 (has links)
Rotordynamic instability can be disastrous for the operation of high speed turbomachinery in the industry. Most ??instabilities?? are due to de-stabilizing cross coupled forces from variable fluid dynamic pressure around a rotor component, acting in the direction of the forward whirl and causing subsynchronous orbiting of the rotor. However, all subsynchronous whirling is not unstable and methods to diagnose the potentially unstable kind are critical to the health of the rotor-bearing system. The objective of this thesis is to explore means of diagnosing whether subsynchronous vibrations are benign or have the potential to become unstable. Several methods will be detailed to draw lines of demarcation between the two. Considerable focus of the research has been on subharmonic vibrations induced from non-linear bearing stiffness and the study of vibration signals typical to such cases. An analytical model of a short-rigid rotor with stiffness non-linearity is used for numerical simulations and the results are verified with actual experiments. Orbits filtered at the subsynchronous frequency are shown as a diagnostic tool to indicate benign vibrations as well as ??frequency tracking?? and agreement of the frequency with known eigenvalues. Several test rigs are utilized to practically demonstrate the above conclusions. A remarkable finding has been the possibility of diagnosing instability using the synchronous phase angle. The synchronous phase angle ?? is the angle by which the unbalance vector leads the vibration vector. Experiments have proved that ?? changes appreciably when there is a de-stabilizing cross coupled force acting on the rotor as compared to when there is none. A special technique to calculate the change in ?? with cross-coupling is outlined along with empirical results to exemplify the case. Subsequently, a correlation between the synchronous phase angle and the phase angle measured with most industrial balancing instruments is derived so that the actual measurement of the true phase angle is not a necessity for diagnosis. Requirements of advanced signal analysis techniques have led to the development of an extremely powerful rotordynamic measurement teststand ?? ??LVTRC??. The software was developed in tandem with this thesis project. It is a stand-alone application that can be used for field measurements and analysis by turbomachinery companies.
|
30 |
The "45 Degree Rule" and its Impact on Strength and Stiffness of a Shaft Subjected to a Torsional LoadNation, Cory A. January 2014 (has links)
No description available.
|
Page generated in 0.0416 seconds