• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Graded representations of Khovanov-Lauda-Rouquier algebras

Sutton, Louise January 2017 (has links)
The Khovanov{Lauda{Rouquier algebras Rn are a relatively new family of Z-graded algebras. Their cyclotomic quotients R n are intimately connected to a smaller family of algebras, the cyclotomic Hecke algebras H n of type A, via Brundan and Kleshchev's Graded Isomorphism Theorem. The study of representation theory of H n is well developed, partly inspired by the remaining open questions about the modular representations of the symmetric group Sn. There is a profound interplay between the representations for Sn and combinatorics, whereby each irreducible representation in characteristic zero can be realised as a Specht module whose basis is constructed from combinatorial objects. For R n , we can similarly construct their representations as analogous Specht modules in a combinatorial fashion. Many results can be lifted through the Graded Isomorphism Theorem from the symmetric group algebras, and more so from H n , to the cyclotomic Khovanov{Lauda{Rouquier algebras, providing a foundation for the representation theory of R n . Following the introduction of R n , Brundan, Kleshchev and Wang discovered that Specht modules over R n have Z-graded bases, giving rise to the study of graded Specht modules. In this thesis we solely study graded Specht modules and their irreducible quotients for R n . One of the main problems in graded representation theory of R n , the Graded Decomposition Number Problem, is to determine the graded multiplicities of graded irreducible R n -modules arising as graded composition factors of graded Specht modules. We rst consider R n in level one, which is isomorphic to the Iwahori{Hecke algebra of type A, and research graded Specht modules labelled by hook partitions in this context. In quantum characteristic two, we extend to R n a result of Murphy for the symmetric groups, determining graded ltrations of Specht modules labelled by hook partitions, whose factors appear as Specht modules labelled by two-part partitions. In quantum characteristic at least three, we determine an analogous R n -version of Peel's Theorem for the symmetric groups, providing an alternative approach to Chuang, Miyachi and Tan. We then study graded Specht modules labelled by hook bipartitions for R n in level two, which is isomorphic to the Iwahori{Hecke algebra of type B. In quantum characterisitic at least three, we completely determine the composition factors of Specht modules labelled by hook bipartitions for R n , together with their graded analogues.
2

Sur les algèbres de Hecke cyclotomiques des groupes de réflexions complexes

Chlouveraki, Maria 21 September 2007 (has links) (PDF)
Suivant la définition de Rouquier de « familles de caractères » d'un groupe de Weyl qui permet la généralisation de cette notion au cas des groupes de réflexions complexes, déjà utilisée dans les travaux de Broué–Kim et Malle–Rouquier, nous montrons que ces "familles" dépendent d'une donnée numériques du groupe, ses "hyperplans essentiels". Nous donnons l'algorithme et les resultats de la détermination des blocs de Rouquier des algèbres de Hecke cyclotomiques de tous les groupes de réflexions complexes exceptionnels.
3

Diameter of a Rouquier block

Mayer, Andrew 14 June 2018 (has links)
No description available.
4

A LOWER BOUND ON THE DISTANCE BETWEEN TWO PARTITIONS IN A ROUQUIER BLOCK

Bellissimo, Michael Robert 08 June 2018 (has links)
No description available.
5

On the Diameter of the Brauer Graph of a Rouquier Block of the Symmetric Group

Trinh, Megan 08 June 2018 (has links)
No description available.

Page generated in 0.0397 seconds