• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 985
  • 277
  • 143
  • 110
  • 86
  • 35
  • 30
  • 28
  • 19
  • 19
  • 16
  • 12
  • 9
  • 8
  • 8
  • Tagged with
  • 2078
  • 647
  • 498
  • 476
  • 386
  • 338
  • 271
  • 242
  • 240
  • 238
  • 238
  • 203
  • 185
  • 175
  • 174
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
671

USING LABVIEW TO DESIGN A FAULT-TOLERANT LINK ESTABLISHMENT PROTOCOL

Horan, Stephen, Deivasigamani, Giriprassad 10 1900 (has links)
International Telemetering Conference Proceedings / October 18-21, 2004 / Town & Country Resort, San Diego, California / The design of a protocol for a satellite cluster link establishment and management that accounts for link corruption, node failures, and node re-establishment is presented in this paper. This protocol will need to manage the traffic flow between nodes in the satellite cluster, adjust routing tables due to node motion, allow for sub-networks in the cluster, and similar activities. This protocol development is in its initial stages and we will describe how we use the LabVIEW Sate Diagram tool kit to generate the code to design a state machine representing the protocol for the establishment of inter-satellite communications links.
672

MPLS-based recovery

Müller, Karen E 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2003. / ENGLISH ABSTRACT: MPLS-based recovery is intended to effect rapid and complete restoration of traffic affected by a fault in a Multiprotocol Label Switching (MPLS) network. Two MPLS-based recovery models have been proposed: lP re-routing which establishes recovery paths on demand, and protection switching which works with pre-established recovery paths. lP re-routing is robust and frugal since no resources are pre-committed but it is inherently slower than protection switching which is intended to offer high reliability to premium services where fault recovery takes place at the 100 ms time scale. This thesis presents an overview of various recovery techniques and addresses the problem of how to find an in some sense optimal set of pre-established traffic engineered recovery paths, given a network with link capacities and traffic demands. We present and motivate our choice of a nonlinear objective function and optimization method for finding traffic engineered working and recovery paths. A variant of the flow deviation method is used to find and capacitate a set of optimal label switched paths. We present and evaluate two simple methods for computing a set of pre-established traffic engineered recovery paths by using the flow deviation method. / AFRIKAANSE OPSOMMING: MPLS-gebaseerde herstel is daarop gemik om verkeer wat deur 'n fout in 'n Multiprotokol Etiketwisseling (Multiprotocol Label Switching) (MPLS) netwerk geaffekteer is, vinnig en volledig te herstel. Twee MPLS-gebaseerde herstelmodelle is voorgestel: Internetprotokol-herroetering (lP rerouting) wat herstelpaaie op aanvraag tot stand bring, en beskermingsoorskakeling (protection switching) wat met voorafbeplande herstelpaaie werk. IP-herroetering is robuust en voordelig aangesien geen netwerkbronne vooraf gereserveer word nie, maar dit is inherent stadiger as beskermingsoorskakeling wat veronderstel is om 'n hoë graad van betroubaarheid aan belangrike dienste te bied waar die herstel van foute in die 100 ms tydskaal plaasvind. Hierdie tesis verskaf 'n oorsig oor verskeie hersteltegnieke en ondersoek die probleem hoe om 'n optimale versameling van voorafbeplande herstelpaaie te vind, gegee 'n netwerk met skakelkapasiteite (link capacities) en verwagte netwerkverkeer. Ons stel voor en motiveer ons keuse van 'n nie-lineêre objekfunksie en optimeringsmetode om verkeersontwerpde (traffic engineered) aktiewe en herstelpaaie te vind. 'n Variant van die vloeideviasie (flow deviation)-metode word gebruik om 'n optimale versameling van etiketwisseling (label switched) paaie te vind en om 'n optimale hoeveelheid kapasiteit aan die paaie toe te ken. Ons stel voor en evalueer twee eenvoudige metodes om 'n versameling van optimale voorafbeplande herstelpaaie te bereken deur die vloeideviasie-metode toe te pas.
673

Estimating Internet-scale Quality of Service Parameters for VoIP

Niemelä, Markus January 2016 (has links)
With the rising popularity of Voice over IP (VoIP) services, understanding the effects of a global network on Quality of Service is critical for the providers of VoIP applications. This thesis builds on a model that analyzes the round trip time, packet delay jitter, and packet loss between endpoints on an Autonomous System (AS) level, extending it by mapping AS pairs onto an Internet topology. This model is used to produce a mean opinion score estimate. The mapping is introduced to reduce the size of the problem in order to improve computation times and improve accuracy of estimates. The results of testing show that estimating mean opinion score from this model is not desirable. It also shows that the path mapping does not affect accuracy, but does improve computation times as the input data grows in volume.
674

Optimising routing and trustworthiness of ad hoc networks using swarm intelligence

Amin, Saman Hameed January 2014 (has links)
This thesis proposes different approaches to address routing and security of MANETs using swarm technology. The mobility and infrastructure-less of MANET as well as nodes misbehavior compose great challenges to routing and security protocols of such a network. The first approach addresses the problem of channel assignment in multichannel ad hoc networks with limited number of interfaces, where stable route are more preferred to be selected. The channel selection is based on link quality between the nodes. Geographical information is used with mapping algorithm in order to estimate and predict the links’ quality and routes life time, which is combined with Ant Colony Optimization (ACO) algorithm to find most stable route with high data rate. As a result, a better utilization of the channels is performed where the throughput increased up to 74% over ASAR protocol. A new smart data packet routing protocol is developed based on the River Formation Dynamics (RFD) algorithm. The RFD algorithm is a subset of swarm intelligence which mimics how rivers are created in nature. The protocol is a distributed swarm learning approach where data packets are smart enough to guide themselves through best available route in the network. The learning information is distributed throughout the nodes of the network. This information can be used and updated by successive data packets in order to maintain and find better routes. Data packets act like swarm agents (drops) where they carry their path information and update routing information without the need for backward agents. These data packets modify the routing information based on different network metrics. As a result, data packet can guide themselves through better routes. In the second approach, a hybrid ACO and RFD smart data packet routing protocol is developed where the protocol tries to find shortest path that is less congested to the destination. Simulation results show throughput improvement by 30% over AODV protocol and 13% over AntHocNet. Both delay and jitter have been improved more than 96% over AODV protocol. In order to overcome the problem of source routing introduced due to the use of the ACO algorithm, a solely RFD based distance vector protocol has been developed as a third approach. Moreover, the protocol separates reactive learned information from proactive learned information to add more reliability to data routing. To minimize the power consumption introduced due to the hybrid nature of the RFD routing protocol, a forth approach has been developed. This protocol tackles the problem of power consumption and adds packets delivery power minimization to the protocol based on RFD algorithm. Finally, a security model based on reputation and trust is added to the smart data packet protocol in order to detect misbehaving nodes. A trust system has been built based on the privilege offered by the RFD algorithm, where drops are always moving from higher altitude to lower one. Moreover, the distributed and undefined nature of the ad hoc network forces the nodes to obligate to cooperative behaviour in order not to be exposed. This system can easily and quickly detect misbehaving nodes according to altitude difference between active intermediate nodes.
675

738 years of global climate model simulated streamflow in the Nelson-Churchill River Basin

Vieira, Michael John Fernandes 02 February 2016 (has links)
Uncertainty surrounds the understanding of natural variability in hydrologic extremes such as droughts and floods and how these events are projected to change in the future. This thesis leverages Global Climate Model (GCM) data to analyse 738 year streamflow scenarios in the Nelson-Churchill River Basin. Streamflow scenarios include a 500 year stationary period and future projections forced by two forcing scenarios. Fifty three GCM simulations are evaluated for performance in reproducing observed runoff characteristics. Runoff from a subset of nine simulations is routed to generate naturalized streamflow scenarios. Quantile mapping is then applied to reduce volume bias while maintaining the GCM’s sequencing of events. Results show evidence of future increases in mean annual streamflow and evidence that mean monthly streamflow variability has decreased from stationary conditions and is projected to decrease further into the future. There is less evidence of systematic change in droughts and floods. / May 2016
676

OPTIMAL ENERGY-DELAY ROUTING PROTOCOL WITH TRUST LEVELS FOR WIRELESS AD HOC NETWORKS

Taqieddin, Eyad 10 1900 (has links)
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada / An ad hoc network is a group of wireless nodes which do not rely on any fixed infrastructure. Hosts cooperate by forwarding packets for each other to communicate with nodes that are out of the radio transmission range. We propose a new routing algorithm that is based on the concept of multipoint relay nodes (MPR). The main focus of the Trust Level Routing protocol is the reliability and survivability of the network by applying costs to each MPR candidate. The cost calculation is based on the delay incurred, energy available at the MPR node, energy spent during transmission and number of packets sent on each link. We highlight the vulnerabilities in current link state routing algorithms and propose the use of light weight encryption algorithms to achieve a dependable routing algorithm. Network simulator (ns-2) is used to compare the protocol performance to other existing link state routing protocols.
677

Performance analysis of new algorithms for routing in mobile ad-hoc networks : the development and performance evaluation of some new routing algorithms for mobile ad-hoc networks based on the concepts of angle direction and node density

Elazhari, Mohamed S. January 2010 (has links)
Mobile Ad hoc Networks (MANETs) are of great interest to researchers and have become very popular in the last few years. One of the great challenges is to provide a routing protocol that is capable of offering the shortest and most reliable path in a MANET in which users are moving continuously and have no base station to be used as a reference for their position. This thesis proposes some new routing protocols based on the angles (directions) of the adjacent mobile nodes and also the node density. In choosing the next node in forming a route, the neighbour node with the closest heading angle to that of the node of interest is selected, so the connection between the source and the destination consists of a series of nodes that are moving in approximately the same direction. The rationale behind this concept is to maintain the connection between the nodes as long as possible. This is in contrast to the well known hop count method, which does not consider the connection lifetime. We propose three enhancements and modifications of the Ad-hoc on demand distance vector (AODV) protocol that can find a suitable path between source and destination using combinations and prioritization of angle direction and hop count. Firstly, we consider that if there are multiple routing paths available, the path with the minimum hop count is selected and when the hop counts are the same the path with the best angle direction is selected. Secondly, if multiple routing paths are available the paths with the best angle direction are chosen but if the angles are the same (fall within the same specified segment), the path with minimum hop count is chosen. Thirdly, if there is more than one path available, we calculate the average of all the heading angles in every path and find the best one (lowest average) from the source to the destination. In MANETs, flooding is a popular message broadcasting technique so we also propose a new scheme for MANETS where the value of the rebroadcast packets for every host node is dynamically adjusted according to the number of its neighbouring nodes. A fixed probabilistic scheme algorithm that can dynamically adjust the rebroadcasting probability at a given node according to its ID is also proposed; Fixed probabilistic schemes are one of the solutions to reduce rebroadcasts and so alleviate the broadcast storm problem. Performance evaluation of the proposed schemes is conducted using the Global Mobile Information System (GloMoSim) network simulator and varying a number of important MANET parameters, including node speed, node density, number of nodes and number of packets, all using a Random Waypoint (RWP) mobility model. Finally, we measure and compare the performance of all the proposed approaches by evaluating them against the standard AODV routing protocol. The simulation results reveal that the proposed approaches give relatively comparable overall performance but which is better than AODV for almost all performance measures and scenarios examined.
678

Localized quality of service routing algorithms for communication networks : the development and performance evaluation of some new localized approaches to providing quality of service routing in flat and hierarchical topologies for computer networks

Alzahrani, Ahmed S. January 2009 (has links)
Quality of Service (QoS) routing considered as one of the major components of the QoS framework in communication networks. The concept of QoS routing has emerged from the fact that routers direct traffic from source to destination, depending on data types, network constraints and requirements to achieve network performance efficiency. It has been introduced to administer, monitor and improve the performance of computer networks. Many QoS routing algorithms are used to maximize network performance by balancing traffic distributed over multiple paths. Its major components include bandwidth, delay, jitter, cost, and loss probability in order to measure the end users' requirements, optimize network resource usage and balance traffic load. The majority of existing QoS algorithms require the maintenance of the global network state information and use it to make routing decisions. The global QoS network state needs to be exchanged periodically among routers since the efficiency of a routing algorithm depends on the accuracy of link-state information. However, most of QoS routing algorithms suffer from scalability problems, because of the high communication overhead and the high computation effort associated with marinating and distributing the global state information to each node in the network. The goal of this thesis is to contribute to enhancing the scalability of QoS routing algorithms. Motivated by this, the thesis is focused on localized QoS routing that is proposed to achieve QoS guarantees and overcome the problems of using global network state information such as high communication overhead caused by frequent state information updates, inaccuracy of link-state information for large QoS state update intervals and the route oscillating due to the view of state information. Using such an approach, the source node makes its own routing decisions based on the information that is local to each node in the path. Localized QoS routing does not need the global network state to be exchanged among network nodes because it infers the network state and avoids all the problems associated with it, like high communication and processing overheads and oscillating behaviour. In localized QoS routing each source node is required to first determine a set of candidate paths to each possible destination. In this thesis we have developed localized QoS routing algorithms that select a path based on its quality to satisfy the connection requirements. In the first part of the thesis a localized routing algorithm has been developed that relies on the average residual bandwidth that each path can support to make routing decisions. In the second part of the thesis, we have developed a localized delay-based QoS routing (DBR) algorithm which relies on a delay constraint that each path satisfies to make routing decisions. We also modify credit-based routing (CBR) so that this uses delay instead of bandwidth. Finally, we have developed a localized QoS routing algorithm for routing in two levels of a hierarchal network and this relies on residual bandwidth to make routing decisions in a hierarchical network like the internet. We have compared the performance of the proposed localized routing algorithms with other localized and global QoS routing algorithms under different ranges of workloads, system parameters and network topologies. Simulation results have indicated that the proposed algorithms indeed outperform algorithms that use the basics of schemes that currently operate on the internet, even for a small update interval of link state. The proposed algorithms have also reduced the routing overhead significantly and utilize network resources efficiently.
679

OPTIMIZATION AND SIMULATION OF JUST-IN-TIME SUPPLY PICKUP AND DELIVERY SYSTEMS

Chuah, Keng Hoo 01 January 2004 (has links)
A just-in-time supply pickup and delivery system (JSS) manages the logistic operations between a manufacturing plant and its suppliers by controlling the sequence, timing, and frequency of container pickups and parts deliveries, thereby coordinating internal conveyance, external conveyance, and the operation of cross-docking facilities. The system is important to just-in-time production lines that maintain small inventories. This research studies the logistics, supply chain, and production control of JSS. First, a new meta-heuristics approach (taboo search) is developed to solve a general frequency routing (GFR) problem that has been formulated in this dissertation with five types of constraints: flow, space, load, time, and heijunka. Also, a formulation for cross-dock routing (CDR) has been created and solved. Second, seven issues concerning the structure of JSS systems that employ the previously studied common frequency routing (CFR) problem (Chuah and Yingling, in press) are explored to understand their impacts on operational costs of the system. Finally, a discreteevent simulation model is developed to study JSS by looking at different types of variations in demand and studying their impacts on the stability of inventory levels in the system. The results show that GFR routes at high frequencies do not have common frequencies in the solution. There are some common frequencies at medium frequencies and none at low frequency, where effectively the problem is simply a vehicle routing problem (VRP) with time windows. CDR is an extension of VRP-type problems that can be solved quickly with meta-heuristic approaches. GFR, CDR, and CFR are practical routing strategies for JSS with taboo search or other types of meta-heuristics as solvers. By comparing GFR and CFR solutions to the same problems, it is shown that the impacts of CFR restrictions on cost are minimal and in many cases so small as to make simplier CFR routes desirable. The studies of JSS structural features on the operating costs of JSS systems under the assumption of CFR routes yielded interesting results. First, when suppliers are clustered, the routes become more efficient at mid-level, but not high or low, frequencies. Second, the cost increases with the number of suppliers. Third, negotiating broad time windows with suppliers is important for cost control in JSS systems. Fourth, an increase or decrease in production volumes uniformly shifts the solutions cost versus frequency curve. Fifth, increased vehicle capacity is important in reducing costs at low and medium frequencies but far less important at high frequencies. Lastly, load distributions among the suppliers are not important determinants of transportation costs as long as the average loads remain the same. Finally, a one-supplier, one-part-source simulation model shows that the systems inventory level tends to be sticky to the reordering level. JSS is very stable, but it requires reliable transportation to perform well. The impact to changes in kanban levels (e.g., as might occur between route planning intervals when production rates are adjusted) is relatively long term with dynamic after-effects on inventory levels that take a long time to dissapate. A gradual change in kanban levels may be introduced, prior to the changeover, to counter this effect.
680

A PROTOCOL SUITE FOR WIRELESS PERSONAL AREA NETWORKS

Persson, Karl E. 01 January 2009 (has links)
A Wireless Personal Area Network (WPAN) is an ad hoc network that consists of devices that surround an individual or an object. Bluetooth® technology is especially suitable for formation of WPANs due to the pervasiveness of devices with Bluetooth® chipsets, its operation in the unlicensed Industrial, Scientific, Medical (ISM) frequency band, and its interference resilience. Bluetooth® technology has great potential to become the de facto standard for communication between heterogeneous devices in WPANs. The piconet, which is the basic Bluetooth® networking unit, utilizes a Master/Slave (MS) configuration that permits only a single master and up to seven active slave devices. This structure limitation prevents Bluetooth® devices from directly participating in larger Mobile Ad Hoc Networks (MANETs) and Wireless Personal Area Networks (WPANs). In order to build larger Bluetooth® topologies, called scatternets, individual piconets must be interconnected. Since each piconet has a unique frequency hopping sequence, piconet interconnections are done by allowing some nodes, called bridges, to participate in more than one piconet. These bridge nodes divide their time between piconets by switching between Frequency Hopping (FH) channels and synchronizing to the piconet's master. In this dissertation we address scatternet formation, routing, and security to make Bluetooth® scatternet communication feasible. We define criteria for efficient scatternet topologies, describe characteristics of different scatternet topology models as well as compare and contrast their properties, classify existing scatternet formation approaches based on the aforementioned models, and propose a distributed scatternet formation algorithm that efficiently forms a scatternet topology and is resilient to node failures. We propose a hybrid routing algorithm, using a bridge link agnostic approach, that provides on-demand discovery of destination devices by their address or by the services that devices provide to their peers, by extending the Service Discovery Protocol (SDP) to scatternets. We also propose a link level security scheme that provides secure communication between adjacent piconet masters, within what we call an Extended Scatternet Neighborhood (ESN).

Page generated in 0.077 seconds