• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 985
  • 277
  • 143
  • 110
  • 86
  • 35
  • 30
  • 28
  • 19
  • 19
  • 16
  • 12
  • 9
  • 8
  • 8
  • Tagged with
  • 2078
  • 647
  • 498
  • 476
  • 386
  • 338
  • 271
  • 242
  • 240
  • 238
  • 238
  • 203
  • 185
  • 175
  • 174
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
681

COMPUTATIONAL TOOLS FOR IMPROVING ROUTE PLANNING IN AGRICULTURAL FIELD OPERATIONS

Zandonadi, Rodrigo S 01 January 2012 (has links)
In farming operation, machinery represents a major cost; therefore, good fleet management can have a great impact on the producer’s profit, especially considering the increasing costs of fuel and production inputs in recent years. One of the tasks to be accomplished in order to improve fleet management is planning the path that the machine should take to cover the field while working. Information such as distance traveled, time and fuel consumption as well as agricultural inputs wasted due to off-target-application areas are crucial in the path planning process. Parameters such as field boundary size and geometry, machine total width as well as control width resolution present a great impact on the information necessary for path planning. Researchers around the world have proposed methods that approach specific aspects related to path planning, the majority addressing machine field efficiency per-se, which a function of total time spent in the field as well as effective working time. However, wasted inputs due to off-target-application areas in the maneuvering regions, especially in oddly shaped agricultural fields might be as important as field efficiency when it comes down to the total operation cost. Thus, the main purpose of this research was to develop a path planning method that accounts for not only machinery field efficiency, but also the supply inputs. This research was accomplished in a threefold approach where in the first step an algorithm for computing off-target application area was developed, implemented and validated resulting in a computational tool that can be used to evaluate potential savings when using automatic section control on agricultural fields of complex field boundary. This tool allowed accomplishment of the second step, which was an investigation and better understanding of field size and shape as well as machine width of the effects on off-target application areas resulting in an empirical method for such estimations based on object shape descriptors. Finally, a path planning algorithm was developed and evaluated taking into consideration the aspects of machine field efficiency as well as off-target application areas.
682

Measuring Effectiveness of Address Schemes for AS-level Graphs

Zhuang, Yinfang 01 January 2012 (has links)
This dissertation presents measures of efficiency and locality for Internet addressing schemes. Historically speaking, many issues, faced by the Internet, have been solved just in time, to make the Internet just work~\cite{justWork}. Consensus, however, has been reached that today's Internet routing and addressing system is facing serious scaling problems: multi-homing which causes finer granularity of routing policies and finer control to realize various traffic engineering requirements, an increased demand for provider-independent prefix allocations which injects unaggregatable prefixes into the Default Free Zone (DFZ) routing table, and ever-increasing Internet user population and mobile edge devices. As a result, the DFZ routing table is again growing at an exponential rate. Hierarchical, topology-based addressing has long been considered crucial to routing and forwarding scalability. Recently, however, a number of research efforts are considering alternatives to this traditional approach. With the goal of informing such research, we investigated the efficiency of address assignment in the existing (IPv4) Internet. In particular, we ask the question: ``how can we measure the locality of an address scheme given an input AS-level graph?'' To do so, we first define a notion of efficiency or locality based on the average number of bit-hops required to advertize all prefixes in the Internet. In order to quantify how far from ``optimal" the current Internet is, we assign prefixes to ASes ``from scratch" in a manner that preserves observed semantics, using three increasingly strict definitions of equivalence. Next we propose another metric that in some sense quantifies the ``efficiency" of the labeling and is independent of forwarding/routing mechanisms. We validate the effectiveness of the metric by applying it to a series of address schemes with increasing randomness given an input AS-level graph. After that we apply the metric to the current Internet address scheme across years and compare the results with those of compact routing schemes.
683

Path Bandwidth Calculation for QoS Support in Wireless Multihop Networks / 支援無線多跳接網路服務品質之路徑頻寬計算

劉姿吟, Liu, Tzu-Yin Unknown Date (has links)
行動資訊服務環境的理想,是要提供一個無所不在的資訊環境,讓使用者可以在任何地方、任何時間,利用各種有線或無線的傳輸網路去存取可用資源。行動通訊與行動計算的飛越發展使得行動資訊服務的理想指日可待。而無線網路要支援一些即時多媒體通訊傳輸,服務品質便成為很重要的課題,頻寬計算更是其中最關鍵的議題。除了現有IEEE 802.11無法有效支援多跳接網路使之達到服務品質的保證外,也由於Ad Hoc網路移動性及流量多變性的特性,要在這樣的無線環境下支援服務品質便成為一個困難的挑戰。由於我們參考的論文皆在TDMA的環境下探討頻寬保證的問題,但是這在無線多跳接網路下十分複雜且受限制。因此我們針對此問題提出一個簡單的頻寬計算方法來估算網路現有頻寬,用於頻寬繞徑演算法上以支援無線網路服務品質。實驗結果顯示我們的方法比過去的頻寬計算方法更簡單、誤差少、適用於各種MAC層的通訊協定,也容易與現有頻寬繞徑演算法結合以執行允入控制機制。透過我們的方法,可以有效地支援無線多跳接網路服務品質。 / The idea of mobile computing service is to provide a ubiquitous information environment. However, the present mobile ad hoc networks still can’t support real-time transmission very effectively. In other words, the capability of supporting QoS guarantee has become a very important issue. IEEE 802.11 PCF adopts the polling scheme to provide time-bounded traffic services, which is not suitable in multi-hop networks. Moreover, due to mobility and traffic dynamics, the network resource management is more difficult. Thus, QoS support in such an environment is a challenge. Specifically, path bandwidth calculation is the first key element. All the bandwidth routing papers we referenced were using TDMA. However, they are restricted in TDMA systems and somehow complicated in path bandwidth calculation. We propose a simple path bandwidth calculation solution that can be used whatever MAC protocol is. It is also easy to implement call admission control and to combine with bandwidth routing algorithms. The simulation results illustrate that the statistical error rates of our path bandwidth calculation are within an acceptable range. By path bandwidth calculation, bandwidth routing algorithm is also developed to achieve the objective of supporting QoS in wireless multihop networks effectively.
684

Virtual Routing and Forwarding (VRF) - och dess påverkan på en routers processor

Ohlson, Johan January 2010 (has links)
<p>I dagsläget används VPN allt mer bland företagen för att ansluta till olika nätverk. Detta kan medföra att routingtabellen blir alltför stor och det kan i sin tur påverka processorbelastningen på routern som delar ut alla VPN.Detta arbete hade som syfte att granska om det är några märkbara prestandaskillnader på en routers processor när olika routingprotokoll används tillsammans med VRF. Protokollen som detta arbete tog upp var BGP, OSPF och RIP.Tre olika nätverks-scenarier skapades där olika tester genomfördes för de tre nämnda routingprotokollen. Det gjordes även tester på routrar när ingen VRF användes för att jämföra resultaten. Testerna bestod av att granska processorbelastningen på routrar när det fanns många rutter i nätverket och när nätverket var belastat med trafik.Testernas visade att skillnaden mellan BGP och OSPF inte är särskilt stor, men när RIP användes så steg processorbelastningen markant när nätverket hade många rutter. Om däremot VRF användes tillsammans med RIP så sjönk belastningen avsevärt på vissa routrar.</p>
685

Optimal and Robust Routing of Subscriptions for Unifying Access to the Past and the Future in Publish/Subscribe

Li, Guoli 18 February 2011 (has links)
A flexible, scalable, and asynchronous middleware abstract is needed for business process management, which involves thousands of tasks and a large number of running instances of large business processes. The content-based publish/subscribe system is an ideal candidate to serve as enterprise service bus for these applications. In the publish/subscribe paradigm, information providers called publishers disseminate publications to all subscribers who have expressed interests by registering subscriptions through a loosely coupled interface. However, the traditional publish/subscribe paradigm only supports stateless subscriptions, that is, event correlation is ignored. Moreover, subscribers can only receive publications issued after their subscriptions. There are many application contexts, however, where access to publications from the past is necessary,such as for replaying a business process execution to debug it. Even more interesting uses arise when data from the past can be correlated with those in the future. Therefore, new languages and new functionalities are needed in the standard publish/subscribe model in order to support business process management. A new subscription language PADRES SQL(PSQL) which can express event patterns and unify both historic and future views for subscribers. PADRES allows a subscriber to access data published both in the past and in the future. Furthermore, complex event detection happens in the broker network. The main difficulties of distributed event detection are routing a composite subscription, including where and how to decompose the composite subscription, and routing the individual parts of the subscription. Our composite subscription routing decisions are based on a cost model which minimizes the routing and detection delay. An adaptive subscription routing protocol is proposed to determine efficient location with dynamic changing workloads. PADRES also provides robust message delivery by exploring alternative paths in a cyclic overlay. Routing optimizations and efficient matching algorithms are studied to improve the performance of the extended publish/subscribe model. With the above features, we propose the Ninos system, the distributed business process execution architecture as a case study,which uses light-weight activity agents to carry out business process execution in a distributed environment. Ninos proves that decentralized business process execution is the trend for next generation products, and the publish/subscribe model is ideal to serve as an enterpriser service bus (ESB) for distributed applications.
686

Game theory for dynamic spectrum sharing cognitive radio

Raoof, Omar January 2010 (has links)
‘Game Theory’ is the formal study of conflict and cooperation. The theory is based on a set of tools that have been developed in order to assist with the modelling and analysis of individual, independent decision makers. These actions potentially affect any decisions, which are made by other competitors. Therefore, it is well suited and capable of addressing the various issues linked to wireless communications. This work presents a Green Game-Based Hybrid Vertical Handover Model. The model is used for heterogeneous wireless networks, which combines both dynamic (Received Signal Strength and Node Mobility) and static (Cost, Power Consumption and Bandwidth) factors. These factors control the handover decision process; whereby the mechanism successfully eliminates any unnecessary handovers, reduces delay and overall number of handovers to 50% less and 70% less dropped packets and saves 50% more energy in comparison to other mechanisms. A novel Game-Based Multi-Interface Fast-Handover MIPv6 protocol is introduced in this thesis as an extension to the Multi-Interface Fast-handover MIPv6 protocol. The protocol works when the mobile node has more than one wireless interface. The protocol controls the handover decision process by deciding whether a handover is necessary and helps the node to choose the right access point at the right time. In addition, the protocol switches the mobile nodes interfaces ‘ON’ and ‘OFF’ when needed to control the mobile node’s energy consumption and eliminate power lost of adding another interface. The protocol successfully reduces the number of handovers to 70%, 90% less dropped packets, 40% more received packets and acknowledgments and 85% less end-to-end delay in comparison to other Protocols. Furthermore, the thesis adapts a novel combination of both game and auction theory in dynamic resource allocation and price-power-based routing in wireless Ad-Hoc networks. Under auction schemes, destinations nodes bid the information data to access to the data stored in the server node. The server will allocate the data to the winner who values it most. Once the data has been allocated to the winner, another mechanism for dynamic routing is adopted. The routing mechanism is based on the source-destination cooperation, power consumption and source-compensation to the intermediate nodes. The mechanism dramatically increases the seller’s revenue to 50% more when compared to random allocation scheme and briefly evaluates the reliability of predefined route with respect to data prices, source and destination cooperation for different network settings. Last but not least, this thesis adjusts an adaptive competitive second-price pay-to-bid sealed auction game and a reputation-based game. This solves the fairness problems associated with spectrum sharing amongst one primary user and a large number of secondary users in a cognitive radio environment. The proposed games create a competition between the bidders and offers better revenue to the players in terms of fairness to more than 60% in certain scenarios. The proposed game could reach the maximum total profit for both primary and secondary users with better fairness; this is illustrated through numerical results.
687

Performance analysis for network coding using ant colony routing

Sabri, Dalia January 2011 (has links)
The aim of this thesis is to conduct performance investigation of a combined system of Network Coding (NC) technique with Ant-Colony (ACO) routing protocol. This research analyses the impact of several workload characteristics, on system performance. Network coding is a significant key development of information transmission and processing. Network coding enhances the performance of multicast by employing encoding operations at intermediate nodes. Two steps should realize while using network coding in multicast communication: determining appropriate transmission paths from source to multi-receivers and using the suitable coding scheme. Intermediate nodes would combine several packets and relay them as a single packet. Although network coding can make a network achieve the maximum multicast rate, it always brings additional overheads. It is necessary to minimize unneeded overhead by using an optimization technique. On other hand, Ant Colony Optimization can be transformed into useful technique that seeks imitate the ant’s behaviour in finding the shortest path to its destination using quantities of pheromone that is left by former ants as guidance, so by using the same concept of the communication network environment, shorter paths can be formulated. The simulation results show that the resultant system considerably improves the performance of the network, by combining Ant Colony Optimization with network coding. 25% improvement in the bandwidth consumption can be achieved in comparison with conventional routing protocols. Additionally simulation results indicate that the proposed algorithm can decrease the computation time of system by a factor of 20%.
688

Flexible cross layer design for improved quality of service in MANETs

Kiourktsidis, Ilias January 2011 (has links)
Mobile Ad hoc Networks (MANETs) are becoming increasingly important because of their unique characteristics of connectivity. Several delay sensitive applications are starting to appear in these kinds of networks. Therefore, an issue in concern is to guarantee Quality of Service (QoS) in such constantly changing communication environment. The classical QoS aware solutions that have been used till now in the wired and infrastructure wireless networks are unable to achieve the necessary performance in the MANETs. The specialized protocols designed for multihop ad hoc networks offer basic connectivity with limited delay awareness and the mobility factor in the MANETs makes them even more unsuitable for use. Several protocols and solutions have been emerging in almost every layer in the protocol stack. The majority of the research efforts agree on the fact that in such dynamic environment in order to optimize the performance of the protocols, there is the need for additional information about the status of the network to be available. Hence, many cross layer design approaches appeared in the scene. Cross layer design has major advantages and the necessity to utilize such a design is definite. However, cross layer design conceals risks like architecture instability and design inflexibility. The aggressive use of cross layer design results in excessive increase of the cost of deployment and complicates both maintenance and upgrade of the network. The use of autonomous protocols like bio-inspired mechanisms and algorithms that are resilient on cross layer information unavailability, are able to reduce the dependence on cross layer design. In addition, properties like the prediction of the dynamic conditions and the adaptation to them are quite important characteristics. The design of a routing decision algorithm based on Bayesian Inference for the prediction of the path quality is proposed here. The accurate prediction capabilities and the efficient use of the plethora of cross layer information are presented. Furthermore, an adaptive mechanism based on the Genetic Algorithm (GA) is used to control the flow of the data in the transport layer. The aforementioned flow control mechanism inherits GA’s optimization capabilities without the need of knowing any details about the network conditions, thus, reducing the cross layer information dependence. Finally, is illustrated how Bayesian Inference can be used to suggest configuration parameter values to the other protocols in different layers in order to improve their performance.
689

Channel assignment and routing in cooperative and competitive wireless mesh networks

Shah, Ibrar Ali January 2012 (has links)
In this thesis, the channel assignment and routing problems have been investigated for both cooperative and competitive Wireless Mesh networks (WMNs). A dynamic and distributed channel assignment scheme has been proposed which generates the network topologies ensuring less interference and better connectivity. The proposed channel assignment scheme is capable of detecting the node failures and mobility in an efficient manner. The channel monitoring module precisely records the quality of bi-directional links in terms of link delays. In addition, a Quality of Service based Multi-Radio Ad-hoc On Demand Distance Vector (QMR-AODV) routing protocol has been devised. QMR-AODV is multi-radio compatible and provides delay guarantees on end-to-end paths. The inherited problem of AODV’s network wide flooding has been solved by selectively forwarding the routing queries on specified interfaces. The QoS based delay routing metric, combined with the selective route request forwarding, reduces the routing overhead from 24% up to 36% and produces 40.4% to 55.89% less network delays for traffic profiles of 10 to 60 flows, respectively. A distributed channel assignment scheme has been proposed for competitive WMNs, where the problem has been investigated by applying the concepts from non-cooperative bargaining Game Theory in two stages. In the first stage of the game, individual nodes of the non-cooperative setup is considered as the unit of analysis, where sufficient and necessary conditions for the existence of Nash Equilibrium (NE) and Negotiation-Proof Nash Equilibrium (N-PNE) have been derived. A distributed algorithm has been presented with perfect information available to the nodes of the network. In the presence of perfect information, each node has the knowledge of interference experience by the channels in its collision domain. The game converges to N-PNE in finite time and the average fairness achieved by all the nodes is greater than 0.79 (79%) as measured through Jain Fairness Index. Since N-PNE and NE are not always a system optimal solutions when considered from the end-nodes prospective, the model is further extended to incorporate non-cooperative end-users bargaining between two end user’s Mesh Access Points (MAPs), where an increase of 10% to 27% in end-to-end throughput is achieved. Furthermore, a non-cooperative game theoretical model is proposed for end-users flow routing in a multi-radio multi-channel WMNs. The end user nodes are selfish and compete for the channel resources across the WMNs backbone, aiming to maximize their own benefit without taking care for the overall system optimization. The end-to-end throughputs achieved by the flows of an end node and interference experienced across the WMNs backbone are considered as the performance parameters in the utility function. Theoretical foundation has been drawn based on the concepts from the Game Theory and necessary conditions for the existence of NE have been extensively derived. A distributed algorithm running on each end node with imperfect information has been implemented to assess the usefulness of the proposed mechanism. The analytical results have proven that a pure strategy Nash Equilibrium exists with the proposed necessary conditions in a game of imperfect information. Based on a distributed algorithm, the game converges to a stable state in finite time. The proposed game theoretical model provides a more reasonable solution with a standard deviation of 2.19Mbps as compared to 3.74Mbps of the random flow routing. Finally, the Price of Anarchy (PoA) of the system is close to one which shows the efficiency of the proposed scheme.
690

Routing Optimization in Wireless Ad Hoc and Wireless Sensor Networks

Joseph, Linus 08 1900 (has links)
Wireless ad hoc networks are expected to play an important role in civilian and military settings where wireless access to wired backbone is either ineffective or impossible. Wireless sensor networks are effective in remote data acquisition. Congestion control and power consumption in wireless ad hoc networks have received a lot of attention in recent research. Several algorithms have been proposed to reduce congestion and power consumption in wireless ad hoc and sensor networks. In this thesis, we focus upon two schemes, which deal with congestion control and power consumption issues. This thesis consists of two parts. In the first part, we describe a randomization scheme for congestion control in dynamic source routing protocol, which we refer to as RDSR. We also study a randomization scheme for GDSR protocol, a GPS optimized variant of DSR. We discuss RDSR and RGDSR implementations and present extensive simulation experiments to study their performance. Our results indicate that both RGDSR and RDSR protocols outperform their non-randomized counterparts by decreasing the number of route query packets. Furthermore, a probabilistic congestion control scheme based on local tuning of routing protocol parameters is shown to be feasible. In the second part we present a simulation based performance study of energy aware data centric routing protocol, EAD, proposed by X. Cheng and A. Boukerche. EAD reduces power consumption by requiring only a small percentage of the network to stay awake. Our experiments show that EAD outperforms the well-known LEACH scheme.

Page generated in 0.0688 seconds