Spelling suggestions: "subject:"rule minining"" "subject:"rule chanining""
41 |
Suporte a sistemas de auxílio ao diagnóstico e de recuperação de imagens por conteúdo usando mineração de regras de associação / Supporting Computer-Aided Diagnosis and Content-Based Image Retrieval Systems through Association Rule MiningRibeiro, Marcela Xavier 16 December 2008 (has links)
Neste trabalho, a mineração de regras de associação é utilizada para dar suporte a dois tipos de sistemas médicos: os sistemas de busca por conteúdo em imagens (Content-based Image Retrieval - CBIR) e os sistemas de auxílio ao diagnóstico (Computer Aided Diagnosis - CAD). Na busca por conteúdo, regras de associação são empregadas para reduzir a dimensionalidade dos vetores de características que representam as imagens e para diminuir o ``gap semântico\'\', que existe entre as características de baixo nível das imagens e seu significado semântico. O algoritmo StARMiner (Statistical Association Rule Miner) foi desenvolvido para associar características de baixo nível das imagens com o seu significado semântico, sendo também utilizado para realizar seleção de características em bases de imagens médicas, melhorando a precisão dos sistemas CBIR. Para dar suporte aos sistemas CAD, o método IDEA (Image Diagnosis Enhancement through Association rules) foi desenvolvido. Nesse método regras de associação são empregadas para sugerir uma segunda opinião ou diagnóstico preliminar de uma nova imagem para o radiologista. A segunda opinião automaticamente gerada pelo método pode acelerar o processo de diagnóstico de uma imagem ou reforçar uma hipótese, trazendo ao especialista médico um apoio estatístico da situação sendo analisada. Dois novos algoritmos foram propostos: um para pré-processar as características de baixo nível das imagens médicas e, o outro, para propor diagnósticos baseados em regras de associação. Vários experimentos foram realizados para validar os métodos desenvolvidos. Os experimentos realizados indicam que o uso de regras de associação pode contribuir para melhorar a busca por conteúdo e o diagnóstico de imagens médicas, consistindo numa poderosa ferramenta para descoberta de padrões em sistemas médicos / In this work we take advantage of association rule mining to support two types of medical systems: the Content-based Image Retrieval (CBIR) and the Computer-Aided Diagnosis (CAD) systems. For content-based retrieval, association rules are employed to reduce the dimensionality of the feature vectors that represent the images and to diminish the semantic gap that exists between low-level features and its high-level semantical meaning. The StARMiner (Statistical Association Rule Miner) algorithm was developed to associate low-level features with their semantical meaning. StARMiner is also employed to perform feature selection in medical image datasets, improving the precision of CBIR systems. To improve CAD systems, we developed the IDEA (Image Diagnosis Enhancement through Association rules) method. Association rules are employed to suggest a second opinion to the radiologist or a preliminary diagnosis of a new image. A second opinion automatically obtained can accelerate the process of diagnosing or strengthen a hypothesis, giving to the physician a statistical support to the decision making process. Two new algorithms are developed to support the IDEA method: to pre-process low-level features and to propose a diagnosis based on association rules. We performed several experiments to validate the developed methods. The results indicate that association rules can be successfully applied to improve CBIR and CAD systems, empowering the arsenal of techniques to support medical image analysis in medical systems
|
42 |
Data Mining Using Neural NetworksRahman, Sardar Muhammad Monzurur, mrahman99@yahoo.com January 2006 (has links)
Data mining is about the search for relationships and global patterns in large databases that are increasing in size. Data mining is beneficial for anyone who has a huge amount of data, for example, customer and business data, transaction, marketing, financial, manufacturing and web data etc. The results of data mining are also referred to as knowledge in the form of rules, regularities and constraints. Rule mining is one of the popular data mining methods since rules provide concise statements of potentially important information that is easily understood by end users and also actionable patterns. At present rule mining has received a good deal of attention and enthusiasm from data mining researchers since rule mining is capable of solving many data mining problems such as classification, association, customer profiling, summarization, segmentation and many others. This thesis makes several contributions by proposing rule mining methods using genetic algorithms and neural networks. The thesis first proposes rule mining methods using a genetic algorithm. These methods are based on an integrated framework but capable of mining three major classes of rules. Moreover, the rule mining processes in these methods are controlled by tuning of two data mining measures such as support and confidence. The thesis shows how to build data mining predictive models using the resultant rules of the proposed methods. Another key contribution of the thesis is the proposal of rule mining methods using supervised neural networks. The thesis mathematically analyses the Widrow-Hoff learning algorithm of a single-layered neural network, which results in a foundation for rule mining algorithms using single-layered neural networks. Three rule mining algorithms using single-layered neural networks are proposed for the three major classes of rules on the basis of the proposed theorems. The thesis also looks at the problem of rule mining where user guidance is absent. The thesis proposes a guided rule mining system to overcome this problem. The thesis extends this work further by comparing the performance of the algorithm used in the proposed guided rule mining system with Apriori data mining algorithm. Finally, the thesis studies the Kohonen self-organization map as an unsupervised neural network for rule mining algorithms. Two approaches are adopted based on the way of self-organization maps applied in rule mining models. In the first approach, self-organization map is used for clustering, which provides class information to the rule mining process. In the second approach, automated rule mining takes the place of trained neurons as it grows in a hierarchical structure.
|
43 |
Fuzzy-Granular Based Data Mining for Effective Decision Support in Biomedical ApplicationsHe, Yuanchen 04 December 2006 (has links)
Due to complexity of biomedical problems, adaptive and intelligent knowledge discovery and data mining systems are highly needed to help humans to understand the inherent mechanism of diseases. For biomedical classification problems, typically it is impossible to build a perfect classifier with 100% prediction accuracy. Hence a more realistic target is to build an effective Decision Support System (DSS). In this dissertation, a novel adaptive Fuzzy Association Rules (FARs) mining algorithm, named FARM-DS, is proposed to build such a DSS for binary classification problems in the biomedical domain. Empirical studies show that FARM-DS is competitive to state-of-the-art classifiers in terms of prediction accuracy. More importantly, FARs can provide strong decision support on disease diagnoses due to their easy interpretability. This dissertation also proposes a fuzzy-granular method to select informative and discriminative genes from huge microarray gene expression data. With fuzzy granulation, information loss in the process of gene selection is decreased. As a result, more informative genes for cancer classification are selected and more accurate classifiers can be modeled. Empirical studies show that the proposed method is more accurate than traditional algorithms for cancer classification. And hence we expect that genes being selected can be more helpful for further biological studies.
|
44 |
Combining Natural Language Processing and Statistical Text Mining: A Study of Specialized Versus Common LanguagesJarman, Jay 01 January 2011 (has links)
This dissertation focuses on developing and evaluating hybrid approaches for analyzing free-form text in the medical domain. This research draws on natural language processing (NLP) techniques that are used to parse and extract concepts based on a controlled vocabulary. Once important concepts are extracted, additional machine learning algorithms, such as association rule mining and decision tree induction, are used to discover classification rules for specific targets. This multi-stage pipeline approach is contrasted with traditional statistical text mining (STM) methods based on term counts and term-by-document frequencies. The aim is to create effective text analytic processes by adapting and combining individual methods. The methods are evaluated on an extensive set of real clinical notes annotated by experts to provide benchmark results.
There are two main research question for this dissertation. First, can information (specialized language) be extracted from clinical progress notes that will represent the notes without loss of predictive information? Secondly, can classifiers be built for clinical progress notes that are represented by specialized language? Three experiments were conducted to answer these questions by investigating some specific challenges with regard to extracting information from the unstructured clinical notes and classifying documents that are so important in the medical domain.
The first experiment addresses the first research question by focusing on whether relevant patterns within clinical notes reside more in the highly technical medically-relevant terminology or in the passages expressed by common language. The results from this experiment informed the subsequent experiments. It also shows that predictive patterns are preserved by preprocessing text documents with a grammatical NLP system that separates specialized language from common language and it is an acceptable method of data reduction for the purpose of STM.
Experiments two and three address the second research question. Experiment two focuses on applying rule-mining techniques to the output of the information extraction effort from experiment one, with the ultimate goal of creating rule-based classifiers. There are several contributions of this experiment. First, it uses a novel approach to create classification rules from specialized language and to build a classifier. The data is split by classification and then rules are generated. Secondly, several toolkits were assembled to create the automated process by which the rules were created. Third, this automated process created interpretable rules and finally, the resulting model provided good accuracy. The resulting performance was slightly lower than from the classifier from experiment one but had the benefit of having interpretable rules.
Experiment three focuses on using decision tree induction (DTI) for a rule discovery approach to classification, which also addresses research question three. DTI is another rule centric method for creating a classifier. The contributions of this experiment are that DTI can be used to create an accurate and interpretable classifier using specialized language. Additionally, the resulting rule sets are simple and easily interpretable, as well as created using a highly automated process.
|
45 |
A data mining approach to ontology learning for automatic content-related question-answering in MOOCsShatnawi, Safwan January 2016 (has links)
The advent of Massive Open Online Courses (MOOCs) allows massive volume of registrants to enrol in these MOOCs. This research aims to offer MOOCs registrants with automatic content related feedback to fulfil their cognitive needs. A framework is proposed which consists of three modules which are the subject ontology learning module, the short text classification module, and the question answering module. Unlike previous research, to identify relevant concepts for ontology learning a regular expression parser approach is used. Also, the relevant concepts are extracted from unstructured documents. To build the concept hierarchy, a frequent pattern mining approach is used which is guided by a heuristic function to ensure that sibling concepts are at the same level in the hierarchy. As this process does not require specific lexical or syntactic information, it can be applied to any subject. To validate the approach, the resulting ontology is used in a question-answering system which analyses students' content-related questions and generates answers for them. Textbook end of chapter questions/answers are used to validate the question-answering system. The resulting ontology is compared vs. the use of Text2Onto for the question-answering system, and it achieved favourable results. Finally, different indexing approaches based on a subject's ontology are investigated when classifying short text in MOOCs forum discussion data; the investigated indexing approaches are: unigram-based, concept-based and hierarchical concept indexing. The experimental results show that the ontology-based feature indexing approaches outperform the unigram-based indexing approach. Experiments are done in binary classification and multiple labels classification settings . The results are consistent and show that hierarchical concept indexing outperforms both concept-based and unigram-based indexing. The BAGGING and random forests classifiers achieved the best result among the tested classifiers.
|
46 |
Elicitation of Protein-Protein Interactions from Biomedical Literature Using Association Rule DiscoverySamuel, Jarvie John 08 1900 (has links)
Extracting information from a stack of data is a tedious task and the scenario is no different in proteomics. Volumes of research papers are published about study of various proteins in several species, their interactions with other proteins and identification of protein(s) as possible biomarker in causing diseases. It is a challenging task for biologists to keep track of these developments manually by reading through the literatures. Several tools have been developed by computer linguists to assist identification, extraction and hypotheses generation of proteins and protein-protein interactions from biomedical publications and protein databases. However, they are confronted with the challenges of term variation, term ambiguity, access only to abstracts and inconsistencies in time-consuming manual curation of protein and protein-protein interaction repositories. This work attempts to attenuate the challenges by extracting protein-protein interactions in humans and elicit possible interactions using associative rule mining on full text, abstracts and captions from figures available from publicly available biomedical literature databases. Two such databases are used in our study: Directory of Open Access Journals (DOAJ) and PubMed Central (PMC). A corpus is built using articles based on search terms. A dataset of more than 38,000 protein-protein interactions from the Human Protein Reference Database (HPRD) is cross-referenced to validate discovered interactive pairs. A set of an optimal size of possible binary protein-protein interactions is generated to be made available for clinician or biological validation. A significant change in the number of new associations was found by altering the thresholds for support and confidence metrics. This study narrows down the limitations for biologists in keeping pace with discovery of protein-protein interactions via manually reading the literature and their needs to validate each and every possible interaction.
|
47 |
Suporte a sistemas de auxílio ao diagnóstico e de recuperação de imagens por conteúdo usando mineração de regras de associação / Supporting Computer-Aided Diagnosis and Content-Based Image Retrieval Systems through Association Rule MiningMarcela Xavier Ribeiro 16 December 2008 (has links)
Neste trabalho, a mineração de regras de associação é utilizada para dar suporte a dois tipos de sistemas médicos: os sistemas de busca por conteúdo em imagens (Content-based Image Retrieval - CBIR) e os sistemas de auxílio ao diagnóstico (Computer Aided Diagnosis - CAD). Na busca por conteúdo, regras de associação são empregadas para reduzir a dimensionalidade dos vetores de características que representam as imagens e para diminuir o ``gap semântico\'\', que existe entre as características de baixo nível das imagens e seu significado semântico. O algoritmo StARMiner (Statistical Association Rule Miner) foi desenvolvido para associar características de baixo nível das imagens com o seu significado semântico, sendo também utilizado para realizar seleção de características em bases de imagens médicas, melhorando a precisão dos sistemas CBIR. Para dar suporte aos sistemas CAD, o método IDEA (Image Diagnosis Enhancement through Association rules) foi desenvolvido. Nesse método regras de associação são empregadas para sugerir uma segunda opinião ou diagnóstico preliminar de uma nova imagem para o radiologista. A segunda opinião automaticamente gerada pelo método pode acelerar o processo de diagnóstico de uma imagem ou reforçar uma hipótese, trazendo ao especialista médico um apoio estatístico da situação sendo analisada. Dois novos algoritmos foram propostos: um para pré-processar as características de baixo nível das imagens médicas e, o outro, para propor diagnósticos baseados em regras de associação. Vários experimentos foram realizados para validar os métodos desenvolvidos. Os experimentos realizados indicam que o uso de regras de associação pode contribuir para melhorar a busca por conteúdo e o diagnóstico de imagens médicas, consistindo numa poderosa ferramenta para descoberta de padrões em sistemas médicos / In this work we take advantage of association rule mining to support two types of medical systems: the Content-based Image Retrieval (CBIR) and the Computer-Aided Diagnosis (CAD) systems. For content-based retrieval, association rules are employed to reduce the dimensionality of the feature vectors that represent the images and to diminish the semantic gap that exists between low-level features and its high-level semantical meaning. The StARMiner (Statistical Association Rule Miner) algorithm was developed to associate low-level features with their semantical meaning. StARMiner is also employed to perform feature selection in medical image datasets, improving the precision of CBIR systems. To improve CAD systems, we developed the IDEA (Image Diagnosis Enhancement through Association rules) method. Association rules are employed to suggest a second opinion to the radiologist or a preliminary diagnosis of a new image. A second opinion automatically obtained can accelerate the process of diagnosing or strengthen a hypothesis, giving to the physician a statistical support to the decision making process. Two new algorithms are developed to support the IDEA method: to pre-process low-level features and to propose a diagnosis based on association rules. We performed several experiments to validate the developed methods. The results indicate that association rules can be successfully applied to improve CBIR and CAD systems, empowering the arsenal of techniques to support medical image analysis in medical systems
|
48 |
Enhancing fuzzy associative rule mining approaches for improving prediction accuracy : integration of fuzzy clustering, apriori and multiple support approaches to develop an associative classification rule baseSowan, Bilal Ibrahim January 2011 (has links)
Building an accurate and reliable model for prediction for different application domains, is one of the most significant challenges in knowledge discovery and data mining. This thesis focuses on building and enhancing a generic predictive model for estimating a future value by extracting association rules (knowledge) from a quantitative database. This model is applied to several data sets obtained from different benchmark problems, and the results are evaluated through extensive experimental tests. The thesis presents an incremental development process for the prediction model with three stages. Firstly, a Knowledge Discovery (KD) model is proposed by integrating Fuzzy C-Means (FCM) with Apriori approach to extract Fuzzy Association Rules (FARs) from a database for building a Knowledge Base (KB) to predict a future value. The KD model has been tested with two road-traffic data sets. Secondly, the initial model has been further developed by including a diversification method in order to improve a reliable FARs to find out the best and representative rules. The resulting Diverse Fuzzy Rule Base (DFRB) maintains high quality and diverse FARs offering a more reliable and generic model. The model uses FCM to transform quantitative data into fuzzy ones, while a Multiple Support Apriori (MSapriori) algorithm is adapted to extract the FARs from fuzzy data. The correlation values for these FARs are calculated, and an efficient orientation for filtering FARs is performed as a post-processing method. The FARs diversity is maintained through the clustering of FARs, based on the concept of the sharing function technique used in multi-objectives optimization. The best and the most diverse FARs are obtained as the DFRB to utilise within the Fuzzy Inference System (FIS) for prediction. The third stage of development proposes a hybrid prediction model called Fuzzy Associative Classification Rule Mining (FACRM) model. This model integrates the ii improved Gustafson-Kessel (G-K) algorithm, the proposed Fuzzy Associative Classification Rules (FACR) algorithm and the proposed diversification method. The improved G-K algorithm transforms quantitative data into fuzzy data, while the FACR generate significant rules (Fuzzy Classification Association Rules (FCARs)) by employing the improved multiple support threshold, associative classification and vertical scanning format approaches. These FCARs are then filtered by calculating the correlation value and the distance between them. The advantage of the proposed FACRM model is to build a generalized prediction model, able to deal with different application domains. The validation of the FACRM model is conducted using different benchmark data sets from the University of California, Irvine (UCI) of machine learning and KEEL (Knowledge Extraction based on Evolutionary Learning) repositories, and the results of the proposed FACRM are also compared with other existing prediction models. The experimental results show that the error rate and generalization performance of the proposed model is better in the majority of data sets with respect to the commonly used models. A new method for feature selection entitled Weighting Feature Selection (WFS) is also proposed. The WFS method aims to improve the performance of FACRM model. The prediction performance is improved by minimizing the prediction error and reducing the number of generated rules. The prediction results of FACRM by employing WFS have been compared with that of FACRM and Stepwise Regression (SR) models for different data sets. The performance analysis and comparative study show that the proposed prediction model provides an effective approach that can be used within a decision support system.
|
49 |
Implementation of a classification algorithm for institutional analysisSun, Hongliang, University of Lethbridge. Faculty of Arts and Science January 2008 (has links)
The report presents an implemention of a classification algorithm for the Institutional Analysis
Project. The algorithm used in this project is the decision tree classification algorithm
which uses a gain ratio attribute selectionmethod. The algorithm discovers the hidden rules
from the student records, which are used to predict whether or not other students are at risk
of dropping out. It is shown that special rules exist in different data sets, each with their
natural hidden knowledge. In other words, the rules that are obtained depend on the data
that is used for classification. In our preliminary experiments, we show that between 55-78
percent of data with unknown class lables can be correctly classified, using the rules obtained
from data whose class labels are known. We feel this is acceptable, given the large
number of records, attributes, and attribute values that are used in the experiments. The
project results are useful for large data set analysis. / viii, 38 leaves ; 29 cm. --
|
50 |
Αυτόματη παραγωγή έμπειρων συστημάτων με συντελεστές βεβαιότητας από σύνολα δεδομένων / Automatic generation of expert systems with certainty factors from datasetsΚόβας, Κωνσταντίνος 11 August 2011 (has links)
Σκοπός της συγκεκριμένης εργασίας είναι η έρευνα πάνω στον τομέα της αυτόματης παραγωγής έμπειρων συστημάτων, ανακαλύπτοντας γνώση μέσα σε σύνολα δεδομένων και αναπαριστώντας την με την μορφή κανόνων. Ουσιαστικά πρόκειται για μια μέθοδο επιτηρούμενης μάθησης όπως η εξόρυξη κανόνων ταξινόμησης, ωστόσο ο στόχος δεν είναι αποκλειστικά η ταξινόμηση, αλλά και η τήρηση σημαντικών προδιαγραφών ενός έμπειρου συστήματος όπως η επεξήγηση, η ενημέρωση για νέα δεδομένα κ.α. Στα πλαίσια της προπτυχιακής μου εργασίας αναπτύχθηκε ένα εργαλείο που είχε σκοπό την σύγκριση μεθόδων για συνδυασμό αβέβαιων συμπερασμάτων για το ίδιο γεγονός, στο μοντέλο των Συντελεστών Βεβαιότητας. Το εργαλείο έδινε την δυνατότητα να παραχθούν Έμπειρα Συστήματα (στη γλώσσα CLIPS) που χρησιμοποιούν τις παραπάνω μεθόδους. Σκοπός της παρούσας εργασίας ήταν η διερεύνηση του τομέα της μηχανικής μάθησης και η επέκταση του υπάρχοντος εργαλείου, ώστε να παράγει έμπειρα συστήματα με έναν πιο αυτόματο, αποδοτικό και λειτουργικό τρόπο. Πιο συγκεκριμένα τροποποιήθηκε η αρχιτεκτονική για την υποστήριξη μεταβλητών εξόδου με περισσότερες από δυο κλάσεις (Multiclass Classification). Επίσης έγινε επέκταση ώστε να μπορούν να εξαχθούν κανόνες για περισσότερες μεταβλητές του συνόλου δεδομένων (εκτός δηλαδή από την μεταβλητή εξόδου), για τις οποίες δεν χρειάζεται πλέον να γνωρίζει τιμές ο τελικός χρήστης του έμπειρου συστήματος. Η επέκταση αυτή δίνει την δυνατότητα να σχεδιαστούν πιο πολύπλοκες ιεραρχίες κανόνων, που ακολουθούν μια δενδρική δομή, εύκολα ερμηνεύσιμη από τον άνθρωπο. Το μοντέλο συντελεστών βεβαιότητας επανασχεδιάστηκε, ενώ πλέον προσφέρεται και ένας εναλλακτικός τρόπος υπολογισμού των συντελεστών βεβαιότητας των κανόνων ταξινόμησης ο οποίος βασίζεται στον ορισμό τους στο έμπειρο σύστημα MYCIN. Τα αποτελέσματα έδειξαν ότι σε μη ισορροπημένα σύνολα δεδομένων η μέθοδος αυτή ευνοεί την πρόβλεψη για την κλάση μειοψηφίας. Τεχνικές επιλογής υποσυνόλων χαρακτηριστικών, δίνουν την δυνατότητα αυτοματοποίησης σε μεγάλο βαθμό της διαδικασίας παραγωγής του έμπειρου συστήματος με τρόπο αποδοτικό. Άλλες προσθήκες είναι η δυνατότητα δημιουργίας συστημάτων που μπορούν να ενημερώνονται δυναμικά αξιοποιώντας νέα δεδομένα για το πρόβλημα, η παραγωγή κανόνων και συναρτήσεων για την αλληλεπίδραση με τον χρήστη, η παροχή γραφικού περιβάλλοντος για το παραγόμενο έμπειρο σύστημα κ.α. / The main objective of this thesis is to present a method for automatic generation of expert systems, by extracting knowledge from datasets and representing it in the form of production rules. We use a supervised machine learning method, resembling Classification Rule Mining, although classification is not our only goal. Important operational characteristics of expert systems, like explanation of conclusions and dynamic update of the knowledge base, are also taken into account. Our approach is implemented within an existing tool, initially developed by us to compare methods for combining uncertain conclusions about the same event, based on the uncertainty model of Certainty Factors. That tool could generate Expert Systems (in CLIPS language) that use the above methods. The main aim of this thesis is to do research mainly on the field of machine learning in order to enhance the above mentioned tool for generating Expert Systems in a more automatic, efficient and functional fashion.
More specifically, the architecture has been modified to support output variables classified in more than two classes (Multiclass Classification). An extension of the system made it possible to generate classification rules for additional variables (apart from the output variable), for which the final user of the expert system cannot provide values. This gives the ability to design more complex rule hierarchies, which are represented in an easy-to-understand tree form. Furthermore, the certainty factors model has been revised and an additional method of computing them is offered, following the definitions in MYCIN’s model. Experimental results showed improved performance, especially for prediction of minority classes in imbalanced datasets. Feature ranking and subset selection techniques help to achieve the generation task in a more automatic and efficient way. Other enhancements include the ability to produce expert systems that dynamically update the certainty factors in their rules, the generation of rules and functions for interaction with the end-user and a graphical interface for the produced expert system.
|
Page generated in 0.079 seconds