• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polinômios algébricos e trigonométricos com zeros reais /

Botta, Vanessa Avansini. January 2003 (has links)
Orientador: Eliana Xavier Linhares de Andrade / Banca: José Roberto Nogueira / Banca: Heloísa Helena Marino Silva / Resumo: O principal objetivo deste trabalho é realizar um estudo sobre polinômios algébricos e trigonométricos que possuem somente zeros reais. O Teorema de Hermite nos dá condições necessárias e su cientes para que isto aconteça. São discutidas questões relacionadas à localização dos zeros, onde a Regra de Sinais de Descartes teve grande importância. Além disso, alguns teoremas clássicos sobre zeros de polinômios algébricos e trigonométricos são apresentados. / Abstract: The main purpose of this work is to study algebraic and trigonometric poly- nomials that have only real zeros. The Hermite Theorem gives necessary and su cient conditions for this to be true. Questions concerning the locations of the zeros are discussed, where the Descarte's Rule of Signs is of great impor- tance. Furthermore, some classical theorems concerning zeros of algebraic and trigonometric polynomials are presented. / Mestre
2

Polinômios algébricos e trigonométricos com zeros reais

Botta, Vanessa Avansini [UNESP] 24 February 2003 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:08Z (GMT). No. of bitstreams: 0 Previous issue date: 2003-02-24Bitstream added on 2014-06-13T20:08:13Z : No. of bitstreams: 1 botta_va_me_sjrp.pdf: 571155 bytes, checksum: 6e200c838e03e019c93da99a37b1515f (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O principal objetivo deste trabalho é realizar um estudo sobre polinômios algébricos e trigonométricos que possuem somente zeros reais. O Teorema de Hermite nos dá condições necessárias e su cientes para que isto aconteça. São discutidas questões relacionadas à localização dos zeros, onde a Regra de Sinais de Descartes teve grande importância. Além disso, alguns teoremas clássicos sobre zeros de polinômios algébricos e trigonométricos são apresentados. / The main purpose of this work is to study algebraic and trigonometric poly- nomials that have only real zeros. The Hermite Theorem gives necessary and su cient conditions for this to be true. Questions concerning the locations of the zeros are discussed, where the Descarte's Rule of Signs is of great impor- tance. Furthermore, some classical theorems concerning zeros of algebraic and trigonometric polynomials are presented.
3

Obst?culos superados pelos matem?ticos no passado e vivenciados pelos alunos na atualidade : a pol?mica multiplica??o de n?meros inteiros

Pontes, Mercia de Oliveira 22 December 2010 (has links)
Made available in DSpace on 2014-12-17T14:36:24Z (GMT). No. of bitstreams: 1 MerciaOP_TESE.pdf: 1133404 bytes, checksum: 81953bfb8e7bacc94a6b29fea8929367 (MD5) Previous issue date: 2010-12-22 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / In Mathematics literature some records highlight the difficulties encountered in the teaching-learning process of integers. In the past, and for a long time, many mathematicians have experienced and overcome such difficulties, which become epistemological obstacles imposed on the students and teachers nowadays. The present work comprises the results of a research conducted in the city of Natal, Brazil, in the first half of 2010, at a state school and at a federal university. It involved a total of 45 students: 20 middle high, 9 high school and 16 university students. The central aim of this study was to identify, on the one hand, which approach used for the justification of the multiplication between integers is better understood by the students and, on the other hand, the elements present in the justifications which contribute to surmount the epistemological obstacles in the processes of teaching and learning of integers. To that end, we tried to detect to which extent the epistemological obstacles faced by the students in the learning of integers get closer to the difficulties experienced by mathematicians throughout human history. Given the nature of our object of study, we have based the theoretical foundation of our research on works related to the daily life of Mathematics teaching, as well as on theorists who analyze the process of knowledge building. We conceived two research tools with the purpose of apprehending the following information about our subjects: school life; the diagnosis on the knowledge of integers and their operations, particularly the multiplication of two negative integers; the understanding of four different justifications, as elaborated by mathematicians, for the rule of signs in multiplication. Regarding the types of approach used to explain the rule of signs arithmetic, geometric, algebraic and axiomatic , we have identified in the fieldwork that, when multiplying two negative numbers, the students could better understand the arithmetic approach. Our findings indicate that the approach of the rule of signs which is considered by the majority of students to be the easiest one can be used to help understand the notion of unification of the number line, an obstacle widely known nowadays in the process of teaching-learning / Na literatura especializada na ?rea de Matem?tica, existem registros que ressaltam as dificuldades enfrentadas no processo de ensino/aprendizagem de n?meros inteiros. Tais dificuldades, vivenciadas e superadas pelos matem?ticos do passado por um longo per?odo, tornam-se obst?culos epistemol?gicos que se imp?em a alunos e professores na atualidade. Este trabalho cont?m os resultados de uma pesquisa desenvolvida na cidade de Natal (RN) no decorrer no primeiro semestre de 2010, em uma escola p?blica estadual de educa??o b?sica e em uma universidade p?blica federal e envolveu 45 alunos assim discriminados: 20 do ensino fundamental, 9 do ensino m?dio e 16 do ensino superior. Teve-se como objetivo central identificar, de um lado, a abordagem da justificativa da multiplica??o entre n?meros inteiros que ? mais bem compreendida pelos alunos e de outro, os elementos presentes nas justificativas que contribuem para a supera??o dos obst?culos epistemol?gicos nos processos de ensino e aprendizagem de n?meros inteiros. Para tanto, procurou-se determinar em que medida os obst?culos epistemol?gicos enfrentados pelos alunos na aprendizagem de n?meros inteiros aproximam-se das dificuldades vivenciadas pelos matem?ticos ao longo da hist?ria da humanidade. Em decorr?ncia da natureza do objeto de pesquisa buscaram-se, no referencial te?rico, os estudos relativos ao cotidiano do ensino de Matem?tica e os te?ricos que se dedicam ao processo de constru??o do conhecimento. Foram elaborados dois instrumentos de pesquisa com a finalidade de apreender as seguintes informa??es sobre os sujeitos pesquisados: vida estudantil; diagn?stico dos conhecimentos de n?meros inteiros e suas opera??es, em especial da multiplica??o de dois n?meros inteiros negativos; compreens?o de quatro justificativas diferentes elaboradas pelos matem?ticos para a regra dos sinais na multiplica??o. No trabalho de campo identificou-se, dentre as abordagens aritm?tica, geom?trica, alg?brica e axiom?tica dadas ao produto de dois n?meros negativos, que os alunos compreendiam melhor a que usava argumentos aritm?ticos. Os resultados obtidos indicam que a justificativa para a regra de sinais que ? considerada de mais f?cil compreens?o pela maioria dos alunos dos ensinos fundamental, m?dio e superior pode ser usada para facilitar a compreens?o da unifica??o da reta num?rica, um obst?culo amplamente identificado no processo de ensino/aprendizagem na atualidade

Page generated in 0.048 seconds