• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 27
  • 15
  • 14
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Simulation of rainfall excess on flat rural watersheds in Quebec

Enright, Peter, 1962- January 1988 (has links)
No description available.
12

Development of a continuous, physically-based distributed parameter, nonpoint source model

Bouraoui, Faycal 19 October 2006 (has links)
ANSWERS, an event-oriented, distributed parameter nonpoint source pollution model for simulating runoff and sediment transport was modified to develop a continuous nonpoint source model to simulate runoff, erosion, transport of dissolved and sediment-bound nutrients, and nutrient transformations. The model was developed for use by nonpoint source pollution managers to study the long-tenn effectiveness of best management practices (BMPs) in reducing runoff, sediment, and nutrient losses from agricultural watersheds. The Holtan's infiltration equation used in the original version of ANSWERS was replaced by the physically-based Green-Ampt infiltration equation. Soil evaporation and plant transpiration were modeled separately using the Ritchie equation. If soil moisture exceeds field capacity, the model computes percolation based on the degree of soil saturation. Nutrient losses include nitrate, sediment-bound and dissolved ammonium; sediment-bound TKN, and sediment-bound and dissolved phosphorus. A linear equilibrium is assumed between dissolved and sediment-bound phases of ammonium and phosphorus. Nutrient loss is assumed to occur only from the upper cm of the soil profile. The model simulates transformations and interactions between four nitrogen pools including stable organic N, active organic N, nitrate and ammonium. Transformations of nitrogen include mineralization simulated as a combination of ammonification and nitrification, denitrification, and plant uptake of ammonium and nitrate. The model maintains a dynamic equilibrium between stable and active organic N pools. / Ph. D.
13

A solution of the two parameter gamma model to relate unit hydrograph features to basin characteristics

Cruise, James Franklin 07 July 2010 (has links)
The problem of correlating unit hydrograph features to topographic and man-made basin characteristics received attention in this report. The unit graph features considered herein were the peak discharge and the time lag of basin response. In order to facilitate the desired regression analysis, the two-parameter gamma model proposed by Edson was utilized in the investigation. The parameters of the model were obtained by the simultaneous solution of the equations for unit graph peak and lag using observed unit hydrographs for 16 basins in the Piedmont region of North Carolina and 14 basins located in Northern Virginia. In the opinion of many, these parameters are a better measure of the complex relationship which exists between the runoff from a basin and the topographic features of that basin than are the values of the unit graph peak and lag time themselves. The basin characteristics utilized in the investigation were: basin area, length of the longest streamcourse in the basin, average stream slope between points 10 percent and 85 percent downstream of the headwaters, and the percent of the impervious area contained in the basin. This last factor served as a measure of the amount of urban development present in the watershed. The investigation was hampered by a regrettable lack of sufficient data to derive regression equations of good reliability. This fact was due to the reduction of the data into groups by narrow geographical ranges. Thus, the number of stations available for analysis in anyone group was insufficient for purposes of a reliable regression analysis. From the investigation, it appears that the most significant basin characteristics affecting runoff are length, slope, and urban development. The strongest regression equations were derived using those three characteristics. It appears that the length and slope factors give better results when combined in the form (L/√S). / Master of Science
14

Improving the Reliability of Compartmental Models: Case of Conceptual Hydrologic Rainfall-Runoff Models

Sorooshian, Soroosh, Gupta, Vijai Kumar 08 1900 (has links)
No description available.
15

CALIBRATION OF RAINFALL-RUNOFF MODELS USING GRADIENT-BASED ALGORITHMS AND ANALYTIC DERIVATIVES

Hendrickson, Jene Diane, Sorooshian, Soroosh 05 1900 (has links)
In the past, derivative-based optimization algorithms have not frequently been used to calibrate conceptual rainfall -riff (CRR) models, partially due to difficulties associated with obtaining the required derivatives. This research applies a recently- developed technique of analytically computing derivatives of a CRR model to a complex, widely -used CRR model. The resulting least squares response surface was found to contain numerous discontinuities in the surface and derivatives. However, the surface and its derivatives were found to be everywhere finite, permitting the use of derivative -based optimization algorithms. Finite difference numeric derivatives were computed and found to be virtually identical to analytic derivatives. A comparison was made between gradient (Newton- Raphsoz) and direct (pattern search) optimization algorithms. The pattern search algorithm was found to be more robust. The lower robustness of the Newton-Raphsoi algorithm was thought to be due to discontinuities and a rough texture of the response surface.
16

Modeling urban stormwater disposal systems for their future management and design

Stovold, Matthew R January 2007 (has links)
[Truncated abstract]This thesis investigates aspects of urban stormwater modeling and uses a small urban catchment (NE38) located in the suburb of Nedlands in Perth, Western Australia to do so. The MUSIC (Model for Urban Stormwater Improvement Conceptualisation) model was used to calibrate catchment NE38 using measured stormwater flows and rainfall data from within the catchment. MUSIC is a conceptual model designed to model stormwater flows within urban environments and uses a rainfall-runoff model adapted to generate results at six minute time steps. Various catchment scenarios, including the use of porous asphalt as an alternative road surface, were applied to the calibrated model to identify effective working stormwater disposal systems that differ from the current system. Calibrating catchment NE38 using the MUSIC model was attempted and this involved matching modeled stormwater flows to stormwater flows measured at the catchment drainage point. This was achieved by measuring runoff contributing areas (roads) together with rainfall data measured from within the catchment and altering the seepage constant parameter for all roadside infiltration sumps. ... The MUSIC model generated future scenario outcomes for alternative stormwater disposal systems that displayed similar or improved levels of performance with respect to the current system. The following scenarios listed in increasing order of effectiveness outline future stormwater disposal systems that may be considered in future urban design. 1. 35% porous asphalt application with no sumps in 2036 2. 35% porous asphalt application with no sumps in 2064 3. 68% porous asphalt application with no sumps in 2036 4. 68% porous asphalt application with no sumps in 2064. Future scenarios using the current stormwater disposal system (with roadside infiltration sumps) with porous asphalt were also run. These scenarios reduced stormwater runoff and contaminant loading on the catchment drainage point however the inclusion of a roadside infiltration sump system may not appeal to urban designers due to the costs involved with this scenario. Climate change will affect the design of future stormwater disposal systems and thus, the design of these systems must consider a rainfall reducing future. Based on the findings of this thesis, current stormwater runoff volumes entering catchment drainage points can be reduced together with contaminant loads in urban environments that incorporate porous asphalt with a stormwater disposal design system that is exclusive of roadside infiltration sumps.
17

Development and performance analysis of a physically based hydrological model incorporating the effects of subgrid heterogeneity

Lee, Haksu January 2007 (has links)
[Truncated abstract] The balance equations of mass and momentum, defined at the scale of what has been defined as a Representative Elementary Watershed (REW) has been proposed by Reggiani et al. (1998, 1999). While it has been acknowledged that the REW approach and the associated balance equations can be the basis for the development of a new generation of distributed physically based hydrological models, four building blocks have been identified as necessary to transform the REW approach into, at the very least least, a workable modelling framework beyond the theoretical achievements. These are: 1) the development of reasonable closure relations for the mass exchange fluxes within and between various REW sub-regions that effectively parameterize the effects of sub-REW heterogeneity of climatic and landscape properties, 2) the design of numerical algorithms capable of generating numerical solutions of the REW-scale balance equations composed of a set of coupled ordinary differential and algebraic equations for the number of REWs constituting a study catchment and the sub-regions within the REWs, 3) applications of the resulting numerical model to real catchments to assess its performance in the prediction of any specified hydrological variables, and 4) the assessment of the model reliability through estimation of model predictive uncertainty and parameter uncertainty. This thesis is aimed at making substantial progress in developing each of these building blocks. Chapter 1 presents the background and motivation for the thesis, while Chapter 2 summarizes its main contributions. Chapter 3 presents a description of the closure problem that the REW approach faces, and presents and implements various approaches to develop closure relations needed for the completeness of balance equations of the REW approach. ... In addition, Chapter 4 also shows an initial application of CREW to a small catchment, Susannah Brook in the south-west of Western Australia. Chapter 5 presents the application of CREW to two meso-scale catchments in Australia, namely Collie and Howard Springs, located in contrasting climates. Chapter 6 presents results of the estimation of predictive uncertainty and parameter sensitivity through the application of CREW to two catchments in Australia, namely Susannah Brook and Howard Springs, by using the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. Finally, Chapter 7 presents recommendations for future work for the further advancement of the REW approach. Through these exercises this PhD thesis has successfully transformed the REW-scale coupled balance equations derived by Reggiani et al. (1998, 1999) into a new, well tested numerical model blueprint for the development and implementation of distributed, physically based models applicable at the catchment, or REW scale.
18

Rainfall runoff model improvements incorporating a dynamic wave model and synthetic stream networks

Cui, Gurong. January 1999 (has links)
Department of Civil, Surveying and Environmental Engineering. Bibliography: leaves 246-255
19

Revised parameter estimation methods for the Pitman monthly rainfall-runoff model

Kapangaziwiri, Evison January 2008 (has links)
In recent years, increased demands have been placed on hydrologists to find the most effective methods of making predictions of hydrologic variables in ungauged basins. A huge part of the southern African region is ungauged and, in gauged basins, the extent to which observed flows represent natural flows is unknown, given unquantified upstream activities. The need to exploit water resources for social and economic development, considered in the light of water scarcity forecasts for the region, makes the reliable quantification of water resources a priority. Contemporary approaches to the problem of hydrological prediction in ungauged basins in the region have relied heavily on calibration against a limited gauged streamflow database and somewhat subjective parameter regionalizations using areas of assumed hydrological similarity. The reliance of these approaches on limited historical records, often of dubious quality, introduces uncertainty in water resources decisions. Thus, it is necessary to develop methods of estimating model parameters that are less reliant on calibration. This thesis addresses the question of whether physical basin properties and the role they play in runoff generation processes can be used directly in the estimation of parameter values of the Pitman monthly rainfall-runoff model. A physically-based approach to estimating the soil moisture accounting and runoff parameters of a conceptual, monthly time-step rainfall-runoff model is proposed. The study investigates the physical meaning of the model parameters, establishes linkages between parameter values and basin physical properties and develops relationships and equations for estimating the parameters taking into account the spatial and temporal scales used in typical model applications. The estimationmethods are then tested in selected gauged basins in southern Africa and the results of model simulations evaluated against historical observed flows. The results of 71 basins chosen from the southern African region suggest that it is possible to directly estimate hydrologically relevant parameters for the Pitman model from physical basin attributes. For South Africa, the statistical and visual fit of the simulations using the revised parameters were at least as good as the current regional sets, albeit the parameter sets being different. In the other countries where no regionalized parameter sets currently exist, simulations were equally good. The availability, within the southern African region, of the appropriate physical basin data and the disparities in the spatial scales and the levels of detail of the data currently available were identified as potential sources of uncertainty. GIS and remote sensing technologies and a widespread use of this revised approach are expected to facilitate access to these data.
20

The application of the monthly time step Pitman rainfall-runoff model to the Kafue River basin of Zambia

Mwelwa, Elenestina Mutekenya January 2005 (has links)
This thesis presents a discussion on the study undertaken in the application of the monthly time step Pitman rainfall-runoff model to the Kafue River basin. The study constituted one of the initial steps in the capacity building and expansion of the application of hydrologic models in the southern African region for water resources assessment, one of the core areas of the Southern African FRIEND project (Flow Regimes from International Experimental Network Data). The research process was undertaken in four major stages, each stage working towards achieving the research objectives. The first stage was the preparation of spatial data which included the selection and delineation of sub-catchments and inclusion of spatial features required to run the Pitman model and transferring the spatial data into SPATSIM. The second stage was the preparation of input data, mainly rainfall, streamflow, evaporation, and water abstraction data. This information was then imported into SPATSIM, which was able to assist in the further preparation of data by assessment of the input data quality, linking of observed flows and spatial interpolation of point rainfall data to average catchment rainfall in readiness for running and calibration of the model. The third stage was the running and calibration of the Pitman model. Use was made of both the automatic calibration facility, as well as manual calibration by means of the time series graph display and analysis facility of SPATSIM. Model calibration was used to obtain the best fit and an acceptable correlation between the simulated and the observed flows and to obtain simulation parameter sets for sub-catchments and regions within the Kafue catchment. The fourth stage was the analysis and evaluation of the model results. This included verification of results over different time periods and validation and testing of parameter transfers to other catchments. This stage also included the evaluation of SPATSIM as a tool for applying the model and as a database for the processing and storage of water resources data. The study’s output includes: A comprehensive database of hydrometeorological, physical catchment characteristics, landuse and water abstraction information for the Kafue basin; calibrated Pitman model parameters for the sub-catchments within the Kafue basin; recommendations for future work and data collection programmes for the application of the model. The study has also built capacity by facilitating training and exposure to rainfall-runoff models (specifically the Pitman model) and associated software, SPATSIM. In addition, the dissemination of the results of this study will serve as an effective way of raising awareness on the application of the Pitman model and the use of the SPATSIM software within Zambia and the region. The overall Pitman model results were found to be satisfactory and the calibrated model is able to reproduce the observed spatial and temporal variations in streamflow characteristics in the Kafue River basin.

Page generated in 0.1122 seconds