• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • 1
  • Tagged with
  • 20
  • 20
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A comparison of capacity and delay values between parallel and intersecting runway configurations at a major airport

Lucas, William E. January 1983 (has links)
M.S.
12

An integrated approach to the optimal runway exit locations

Kim, Byung Jong 24 March 2009 (has links)
The airport capacity problem has recently received a great deal of attention due to airport congestion and delays. Capacity improvements of airfield and airspace component of an airport are currently being addressed by several researchers and federal and state agencies. The optimal location of runway turnoffs is the focus of this research. Although the current airport capacity limitations are dictated by airspace separation rules, it is expected that runway occupancy time (ROT) will become an important factor In the near future as the interarrival separations between landing aircraft are reduced. The intent of this research is to show that the use of high speed exits on runway contributes to the reduction of ROT, and therefore provides enhancement in runway capacity. However, locating the high speed exits is a complex and dynamic problem stemming from the aircraft landing behavior. The landing behavior of an aircraft is affected by many factors such as approach speed, deceleration rate, design exit speed, airport elevation, wind, temperature, etc .. Some of these factors are probabilistic in nature. A simulation model and an optimization algorithm that take into consideration all above factors developed to address the problem. The simulation model consists of a series of dynamic equations of motion that models the aircraft landing behavior under various airport conditions, and determines the best exit location for that aircraft. The optimization model takes the simulation results as input for various aircraft mix, and finds a given number of exit locations which minimize the average ROT for the total aircraft fleet. / Master of Science
13

Community acceptance of Tung Chung residents and the planning of the third runway in Hong Kong international Airport

Pang, Yiu-fai., 彭耀暉. January 2011 (has links)
published_or_final_version / Urban Planning and Design / Master / Master of Science in Urban Planning
14

The stripping susceptibility of airfield asphalt mixes: the development of guidelines for a laboratory test method /

Mostafa, Abdelzaher Ezzeldeen Ahmed. January 1900 (has links)
Thesis (Ph.D.) - Carleton University, 2005. / Includes bibliographical references (p. 250-267). Also available in electronic format on the Internet.
15

Évaluation de la performance des produits déverglaçants pour pistes et voies d'accès d'aéroport /

Yang, Shan, January 1999 (has links)
Mémoire (M.Eng.)--Université du Québec à Chicoutimi, 1999. / Document électronique également accessible en format PDF. CaQCU
16

The economic justification and operational requirements of high-speed runway exits

Zhong, Caoyuan 04 December 2009 (has links)
The objective of this thesis is to analyze the operational requirements of aircraft during the runway exiting maneuvers and the economic feasibility of high-speed runway exits. The motion of the aircraft is simulated by a computer program based on the appropriate equations of motion and steering inputs. The economic analysis of high-speed runway exits is based on a life cycle cost approach. Historical data of airline operating costs are also used in the cost estimations. The results show that high-speed runway exits are operationally feasible and economically profitable. The results are also presented graphically to show the effect of various steering commands on the vehicle turning maneuvering requirements and the effect of different economic parameters to the evaluation of high-speed exit utilizations. / Master of Science
17

From highway to runway: a flight training centre on Ngong Shuen Chau Viaduct. / 實現夢・飛行 / Shi xian meng, fei xing

January 2008 (has links)
Wong Ching Yee Danise. / "Architecture Department, Chinese University of Hong Kong, Master of Architecture Programme 2007-2008, design report." / Includes bibliographical references (leaves 33). / Chapter 1. --- Background / Chapter 1.1 --- Lack of general aviation facilities / Chapter 1.2 --- Site selection limitations / Chapter 1.3 --- Runway's fundamental / Chapter 2. --- Observation / Chapter 2.1 --- Infrastructure in Hong Kong / Chapter 2.2 --- "Transforming Civil Structure to ""Place""" / Chapter 3. --- Research Part I: Wisdom from the Aircraft / Chapter 3.1 --- Monoplane to biplane / Chapter 3.2 --- "S, M, L" / Chapter 3.3 --- Multi - layered space / Chapter 3.4 --- Composition in manufacture process / Chapter 4. --- Research Part II: Site Selection Criteria and Result / Chapter 4.1 --- Prevailing wind / Chapter 4.2 --- Critical aeroplane / Chapter 4.3 --- Airspace / Chapter 4.4 --- Accessibility / Chapter 4.5 --- Possible Sites / Chapter 4.6 --- Stonecutter's Island / Chapter 5. --- Research Part III: Precedence Study / Chapter 5.1 --- Typical General Aviation Facilities Study / Chapter 5.2 --- A Study of Aircraft Carrier / Chapter 5.3 --- Similar example / Chapter 6. --- Deduction: Issues and Direction / Chapter 7. --- Architectural Proposal: Flight Training Centre / Chapter 8. --- Other Research / Chapter 9. --- Bibliography
18

Numerical simulation of feedback control of aerodynamic configurations in steady and unsteady ground effects

Nuhalt, Abdullah O. January 1988 (has links)
A general numerical simulation of closely coupled lifting surfaces in steady and unsteady ground effects was developed. This model was coupled with the equations of motion to simulate aerodynamic-dynamic interaction. The resulting model was then coupled with a feedback-control law to form a general nonlinear unsteady numerical simulation of control of an aircraft in and out of ground effect. The aerodynamic model is based on the general unsteady vortex-lattice method and the method of images. It is not restricted by planform, angle of attack, sink rate, dihedral angle, twist, camber, etc. as long as stall or vortex bursting does not occur. In addition, it has the versatility to model steady and unsteady aerodynamic interference. The present model can be used to simulate any prescribed flare and to model the effects of cross and/or head winds near the ground. The present results show the influences of various parameters on the aerodynamic coefficients for both steady and unsteady flows. Generally, the ground increases the aerodynamic coefficients; the greater the sink rates, the stronger the effects. Increasing the aspect ratio increases both the steady and unsteady ground effects. An exception is a large aspect-ratio wing with large camber. The present results are generally in close agreement with limited exact solutions and experimental data. In the aerodynamic-dynamic simulation, the equations of motion were solved by Hammlng's predictor-corrector method. The aircraft, air stream, and control surfaces were treated as a single dynamic system. The entire set of governing equations was solved simultaneously and interactively. The aerodynamic-dynamic model was used to study a configuration that resembles a Cessna 182 airplane. The ground lowers the effectiveness of the tail in controlling pitch, increases the lift and drag, and makes the hinge-moment less negative. Proportional and rate control laws were used in a feedback system to control pitch. One set of gains was used in and out of ground effect. For the same control input, the pitch angle responds faster and overshoots more near the ground than it does far from the ground. The present results demonstrate the feasibility of using the current simulation to model more complicated motions and the Importance of including the unsteady ground effects when analyzing the performance of an airplane during a landing maneuver. / Ph. D.
19

Optimal runway exit design and capacity enhancement

Kim, Byung Jong 19 June 2006 (has links)
Congestion and delay problems at airports have received much attention in recent years because of the unbalanced condition between demand and supply. Recent demand forecasts indicate that the problems are expected to increase in the next decade. Relieving congestion of the air transportation networks requires several strategies to enhance the runway capacity. Among these strategies is reducing the runway occupancy time a critical factor in affecting runway capacity. And one approach to reducing the runway occupancy time (ROT) is locating the high speed exits optimally. In addressing the reduction of the runway occupancy time, a full information on the distribution of aircraft landing distance is required. The landing performance at a specific airport may be found by observing the actual landings. However, this is costly and may not be transferable to other airports. An alternative approach is to use a simulation model. A simulation model was built at Center for Transportation Research at Virginia Tech based on point mass kinematics in the flying phase over runway and the ground roll phase on runway to predict the landing roll distance and time to a specified exit speed. Many influencing parameters were incorporated into the model, and then were calibrated using the field data obtained from real operations. The prediction of a nominal landing roll distance and time to decelerate to a specified exit speed is not sufficient for estimating ROT because the additional time to reach a designated exit should be taken into account. To compute the additional time, a braking adjustment scheme is selected from several alternative schemes. The combination of the selected braking adjustment scheme and the simulation model approximates very closely the observed ROT. An optimization model is formulated to determine the exit locations so as to minimize the weighted average ROT of the defined aircraft mix. A polynomial-time solution algorithm is developed for this model using Dynamic Programming technique. The major input parameters for the model are the distribution of the landing roll distance to the specified exit speed and the information on the aircraft mix. The model structured to address the problem of designing a new runway as well as the problem of improving an existing runway. A runway capacity model is used to convert the optimized ROT into capacity gains. Four scenarios are analyzed. Among the scenarios, one is based on the present Air Traffic Control procedures, and three are based on the future developments. The capacity analysis reveals that the ROT does not affect the runway capacity for landing operations. However, the ROT is found as a critical factor for the runway capacity for mixed operations. Hence, the ROT should be optimized for the current system and more crucially for the future developments. The capacity gains by optimizing the ROT under the current Air Traffic Control systems and standards are estimated 2 to 7 more operations per hour. These gains will increase to 20 more operations per hour in the future environment. / Ph. D.
20

Increasing capacity by the use of optimal runway exits, automated landing, roll out and turnoff in an airport environment

Nam, Amadou Sylla January 1986 (has links)
This study outlines the development and use of several techniques providing an automated landing, roll out and turnoff of an aircraft, in an airport environment. A maximum runway occupancy time and a certain level of reliability are achieved by the use of a computer software called the Probabilistic Computer Model of Optimal Runway Turnoffs. A bunching of eight optimal high speed exits, representing four TERPS categories, is performed on a single runway. Feasibility of the system is determined by the use of Inertial Navigation and other aids such as the Microwave Landing System, Filtering Devices, Electronic Cockpit Airfield Display Formats, Real Time Flight Simulation and Field Testing, and a Braking Guidance Policy. It is suggested that future testing and a review of the Model be done. / M.S.

Page generated in 0.0623 seconds