• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 54
  • 54
  • 54
  • 43
  • 20
  • 15
  • 14
  • 13
  • 12
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

On the returns of trend-following trading strategies / Avkastningen från trendföljande handelsstrategier

Lundström, Christian January 2017 (has links)
Paper [I] tests the success rate of trades and the returns of the Opening Range Breakout (ORB) strategy. A trader that trades on the ORB strategy seeks to identify large intraday price movements and trades only when the price moves beyond some predetermined threshold. We present an ORB strategy based on normally distributed returns to identify such days and find that our ORB trading strategy result in significantly higher returns than zero as well as an increased success rate in relation to a fair game. The characteristics of such an approach over conventional statistical tests is that it involves the joint distribution of low, high, open and close over a given time horizon. Paper [II] measures the returns of a popular day trading strategy, the Opening Range Breakout strategy (ORB), across volatility states. We calculate the average daily returns of the ORB strategy for each volatility state of the underlying asset when applied on long time series of crude oil and S&P 500 futures contracts. We find an average difference in returns between the highest and the lowest volatility state of around 200 basis points per day for crude oil, and of around 150 basis points per day for the S&P 500. This finding suggests that the success in day trading can depend to a large extent on the volatility of the underlying asset. Paper [III] performs empirical analysis on short-term and long-term Commodity Trading Advisor (CTA) strategies regarding their exposures to unanticipated risk shocks. Previous research documents that CTA strategies offer diversification opportunities during equity market crisis situations when evaluated as a group, but do not separate between short-term and long-term CTA strategies. When separating between short-term and long-term CTA strategies, this paper finds that only short-term CTA strategies provide a significant, and consistent, exposure to unanticipated risk shocks while long-term CTA strategies do not. For the purpose of diversifying a portfolio during equity market crisis situations, this result suggests that an investor should allocate to short-term CTA strategies rather than to long-term CTA strategies.
52

Statistical properties of the liquidity and its influence on the volatility prediction / Statistical properties of the liquidity and its influence on the volatility prediction

Brandejs, David January 2016 (has links)
This master thesis concentrates on the influence of liquidity measures on the prediction of volatility and given the magic triangle phenomena subsequently on the expected return. Liquidity measures Amihud Illiquidity, Amivest Liquidity and Roll adjusted for high frequency data have been utilized. Dataset used for the modeling was consisting of 98 shares that were traded on S&P 100. The time range was from 1st January 2013 to 31st December 2014. We have found out that the liquidity truly enters into the return-volatility relationship and influences these variables - the magic triangle interacts. However, contrary to our hypothesis, the model shows up that lower liquidity signifies lower realized risk. This inference has been suggested by all three models (3SLS, 2SLS and OLS). Furthermore, we have used the realized variance and bi-power variation to separate the jump. Our second hypothesis that lower liquidity signifies higher frequency of jumps was confirmed only for one of two liquidity proxies (Roll) included in the resulting logit FE model. Keywords liquidity, risk, volatility, expected return, magic triangle, price jumps, realized variance, bi-power variation, three-stage least squares model, logit, high-frequency data, S&P 100 Author's e-mail david.brandejs@seznam.cz Supervisor's e-mail...
53

預測S&P500指數實現波動度與VIX- 探討VIX、VIX選擇權與VVIX之資訊內涵 / The S&P 500 Index Realized Volatility and VIX Forecasting - The Information Content of VIX, VIX Options and VVIX

黃之澔 Unknown Date (has links)
波動度對於金融市場影響甚多,同時為金融資產定價的重要參數以及市場穩 定度的衡量指標,尤其在金融危機發生時,波動度指數的驟升反映資產價格震盪。 本篇論文嘗試捕捉S&P500 指數實現波動度與VIX變動率未來之動態,並將VIX、 VIX 選擇權與VVIX 納入預測模型中,探討其資訊內涵。透過研究S&P500 指數 實現波動度,能夠預測S&P500 指數未來之波動度與報酬,除了能夠觀察市場變 動,亦能使未來選擇權定價更為準確;而藉由模型預測VIX,能夠藉由VIX 選 擇權或VIX 期貨,提供避險或投資之依據。文章採用2006 年至2011 年之S&P500 指數、VIX、VIX 選擇權與VVIX 資料。 在 S&P500 指數之實現波動度預測當中,本篇論文的模型改良自先前文獻, 結合實現波動度、隱含波動度與S&P500 指數選擇權之風險中立偏態,所構成之 異質自我回歸模型(HAR-RV-IV-SK model)。論文額外加入VIX 變動率以及VIX指數選擇權之風險中立偏態作為模型因子,預測未來S&P500 指數實現波動度。 研究結果表示,加入VIX 變動率作為S&P500 指數實現波動度預測模型變數後, 可增加S&P500 指數實現波動度預測模型之準確性。 在 VIX 變動率預測模型之中,論文採用動態轉換模型,作為高低波動度之 下,區分預測模型的方法。以VIX 過去的變動率、VIX 選擇權之風險中立動差 以及VIX 之波動度指數(VVIX)作為變數,預測未來VIX 變動率。結果顯示動態 轉換模型能夠提升VIX 預測模型的解釋能力,並且在動態轉換模型下,VVIX 與 VIX 選擇權之風險中立動差,對於VIX 預測具有相當之資訊隱涵於其中。 / This paper tries to capture the future dynamic of S&P 500 index realized volatility and VIX. We add the VIX change rate and the risk neutral skewness of VIX options into the Heterogeneous Autoregressive model of Realized Volatility, Implied Volatility and Skewness (HAR-RV-IV-SK) model to forecast the S&P 500 realized volatility. Also, this paper uses the regime switching model and joins the VIX, risk neutral moments of VIX options and VVIX variables to raise the explanatory ability in the VIX forecasting. The result shows that the VIX change rate has additional information on the S&P 500 realized volatility. By using the regime switching model, the VVIX and the risk neutral moments of VIX options variables have information contents in VIX forecasting. These models can be used for hedging or investment purposes.
54

Essays in functional econometrics and financial markets

Tsafack-Teufack, Idriss 07 1900 (has links)
Dans cette thèse, j’exploite le cadre d’analyse de données fonctionnelles et développe l’analyse d’inférence et de prédiction, avec une application à des sujets sur les marchés financiers. Cette thèse est organisée en trois chapitres. Le premier chapitre est un article co-écrit avec Marine Carrasco. Dans ce chapitre, nous considérons un modèle de régression linéaire fonctionnelle avec une variable prédictive fonctionnelle et une réponse scalaire. Nous effectuons une comparaison théorique des techniques d’analyse des composantes principales fonctionnelles (FPCA) et des moindres carrés partiels fonctionnels (FPLS). Nous déterminons la vitesse de convergence de l’erreur quadratique moyen d’estimation (MSE) pour ces méthodes. Aussi, nous montrons cette vitesse est sharp. Nous découvrons également que le biais de régularisation de la méthode FPLS est plus petit que celui de FPCA, tandis que son erreur d’estimation a tendance à être plus grande que celle de FPCA. De plus, nous montrons que le FPLS surpasse le FPCA en termes de prédiction avec moins de composantes. Le deuxième chapitre considère un modèle autorégressif entièrement fonctionnel (FAR) pour prèvoir toute la courbe de rendement du S&P 500 a la prochaine journée. Je mène une analyse comparative de quatre techniques de Big Data, dont la méthode de Tikhonov fonctionnelle (FT), la technique de Landweber-Fridman fonctionnelle (FLF), la coupure spectrale fonctionnelle (FSC) et les moindres carrés partiels fonctionnels (FPLS). La vitesse de convergence, la distribution asymptotique et une stratégie de test statistique pour sélectionner le nombre de retard sont fournis. Les simulations et les données réelles montrent que les méthode FPLS performe mieux les autres en terme d’estimation du paramètre tandis que toutes ces méthodes affichent des performances similaires en termes de prédiction. Le troisième chapitre propose d’estimer la densité de neutralité au risque (RND) dans le contexte de la tarification des options, à l’aide d’un modèle fonctionnel. L’avantage de cette approche est qu’elle exploite la théorie d’absence d’arbitrage et qu’il est possible d’éviter toute sorte de paramétrisation. L’estimation conduit à un problème d’inversibilité et la technique fonctionnelle de Landweber-Fridman (FLF) est utilisée pour le surmonter. / In this thesis, I exploit the functional data analysis framework and develop inference, prediction and forecasting analysis, with an application to topics in the financial market. This thesis is organized in three chapters. The first chapter is a paper co-authored with Marine Carrasco. In this chapter, we consider a functional linear regression model with a functional predictor variable and a scalar response. We develop a theoretical comparison of the Functional Principal Component Analysis (FPCA) and Functional Partial Least Squares (FPLS) techniques. We derive the convergence rate of the Mean Squared Error (MSE) for these methods. We show that this rate of convergence is sharp. We also find that the regularization bias of the FPLS method is smaller than the one of FPCA, while its estimation error tends to be larger than that of FPCA. Additionally, we show that FPLS outperforms FPCA in terms of prediction accuracy with a fewer number of components. The second chapter considers a fully functional autoregressive model (FAR) to forecast the next day’s return curve of the S&P 500. In contrast to the standard AR(1) model where each observation is a scalar, in this research each daily return curve is a collection of 390 points and is considered as one observation. I conduct a comparative analysis of four big data techniques including Functional Tikhonov method (FT), Functional Landweber-Fridman technique (FLF), Functional spectral-cut off (FSC), and Functional Partial Least Squares (FPLS). The convergence rate, asymptotic distribution, and a test-based strategy to select the lag number are provided. Simulations and real data show that FPLS method tends to outperform the other in terms of estimation accuracy while all the considered methods display almost the same predictive performance. The third chapter proposes to estimate the risk neutral density (RND) for options pricing with a functional linear model. The benefit of this approach is that it exploits directly the fundamental arbitrage-free equation and it is possible to avoid any additional density parametrization. The estimation problem leads to an inverse problem and the functional Landweber-Fridman (FLF) technique is used to overcome this issue.

Page generated in 0.0422 seconds