Spelling suggestions: "subject:"séparation aveugle dde sources,"" "subject:"séparation aveugle dee sources,""
31 |
Outils pour la détection et la classification<br />Application au diagnostic de défauts de surface de railBentoumi, Mohamed 15 October 2004 (has links) (PDF)
Le travail présenté dans ce mémoire aborde les problématiques de détection et de classification pour le diagnostic de défauts. Deux approches différentes sont abordées. La première approche est l'approche de détection et classification simultanées où le problème global à K classes est scindé en sous-problèmes. Chaque sous-problème a en charge la détection d'une ou plusieurs classes de défauts et il est traité par une cellule qui enchaîne les phases de prétraitement des signaux, de choix de l'espace de représentation, de détection, puis de décision. La résolution complète du problème à K classes s'effectue par un agencement séquentiel des cellules selon un arbre de décision hiérarchique ou par une mise en parallèle des cellules avec règles de décision associées.<br />La seconde approche est l'approche de détection et classification successives. Elle consiste à traiter tout<br />d'abord les signaux issus du capteur de manière simple pour la délivrance d'un signal d'alarme indiquant la<br />présence possible d'un défaut. Dans ce cas, et dans ce cas seulement, des traitements haut niveau sont mis en<br />oeuvre dans le but d'analyser plus finement les signatures de ces défauts. Les outils pour la classification - les différents classifieurs linéaires, les classifieurs neuronaux et les machines à vecteurs de support - sont détaillés. L'accent est mis sur le réglage des marges des classifieurs linéaires, sur leurs capacités de généralisation et sur les estimateurs de cette capacité de généralisation.<br />L'ensemble de ces méthodes a été validé sur une application concernant la détection de défauts de surface de rail dans un contexte métro. Un démonstrateur temps réel et opérant en condition d'exploitation a permis de tester les solutions de l'approche détection et classification simultanées, en considérant les taux de bonne détection et de<br />fausse alarme sur 4 classes de défauts de rail. La transformée en ondelettes, le filtrage inverse et la séparation de sources par analyse en composantes indépendantes sont les outils de prétraitement qui ont été particulièrement détaillés dans ce contexte applicatif.<br />Une base de données, constituée à partir de mesures sur site labellisées, a permis de qualifier statistiquement les solutions de l'approche détection et classification successives. Une hiérarchisation des méthodes est proposée en fonction de leur capacité de généralisation, mais aussi de leur complexité et de leur aptitude à traiter le problème avec ou sans optimisation des espaces de représentation.
|
32 |
Analyse en composantes indépendantes avec une matrice de mélange éparseBillette, Marc-Olivier 06 1900 (has links)
L'analyse en composantes indépendantes (ACI) est une méthode d'analyse statistique qui consiste à exprimer les données observées (mélanges de sources) en une transformation linéaire de variables latentes (sources) supposées non gaussiennes et mutuellement indépendantes. Dans certaines applications, on suppose que les mélanges de sources peuvent être groupés de façon à ce que ceux appartenant au même groupe soient fonction des mêmes sources. Ceci implique que les coefficients de chacune des colonnes de la matrice de mélange peuvent être regroupés selon ces mêmes groupes et que tous les coefficients de certains de ces groupes soient nuls. En d'autres mots, on suppose que la matrice de mélange est éparse par groupe. Cette hypothèse facilite l'interprétation et améliore la précision du modèle d'ACI. Dans cette optique, nous proposons de résoudre le problème d'ACI avec une matrice de mélange éparse par groupe à l'aide d'une méthode basée sur le LASSO par groupe adaptatif, lequel pénalise la norme 1 des groupes de coefficients avec des poids adaptatifs. Dans ce mémoire, nous soulignons l'utilité de notre méthode lors d'applications en imagerie cérébrale, plus précisément en imagerie par résonance magnétique. Lors de simulations, nous illustrons par un exemple l'efficacité de notre méthode à réduire vers zéro les groupes de coefficients non-significatifs au sein de la matrice de mélange. Nous montrons aussi que la précision de la méthode proposée est supérieure à celle de l'estimateur du maximum de la vraisemblance pénalisée par le LASSO adaptatif dans le cas où la matrice de mélange est éparse par groupe. / Independent component analysis (ICA) is a method of statistical analysis where the main goal is to express the observed data (mixtures) in a linear transformation of latent variables (sources) believed to be non-Gaussian and mutually independent. In some applications, the mixtures can be grouped so that the mixtures belonging to the same group are function of the same sources. This implies that the coefficients of each column of the mixing matrix can be grouped according to these same groups and that all the coefficients of some of these groups are zero. In other words, we suppose that the mixing matrix is sparse per group. This assumption facilitates the interpretation and improves the accuracy of the ICA model. In this context, we propose to solve the problem of ICA with a sparse group mixing matrix by a method based on the adaptive group LASSO. The latter penalizes the 1-norm of the groups of coefficients with adaptive weights. In this thesis, we point out the utility of our method in applications in brain imaging, specifically in magnetic resonance imaging. Through simulations, we illustrate with an example the effectiveness of our method to reduce to zero the non-significant groups of coefficients within the mixing matrix. We also show that the accuracy of the proposed method is greater than the one of the maximum likelihood estimator with an adaptive LASSO penalization in the case where the mixing matrix is sparse per group.
|
33 |
Spatial Separation of Sound SourcesDong, Bin 14 April 2014 (has links) (PDF)
La séparation aveugle de sources est une technique prometteuse pour l'identification, la localisation, et la classification des sources sonores. L'objectif de cette thèse est de proposer des méthodes pour séparer des sources sonores incohérentes qui peuvent se chevaucher à la fois dans les domaines spatial et fréquentiel par l'exploitation de l'information spatiale. De telles méthodes sont d'intérêt dans les applications acoustiques nécessitant l'identification et la classification des sources sonores ayant des origines physiques différentes. Le principe fondamental de toutes les méthodes proposées se décrit en deux étapes, la première étant relative à la reconstruction du champ source (comme par exemple à l'aide de l'holographie acoustique de champ proche) et la seconde à la séparation aveugle de sources. Spécifiquement, l'ensemble complexe des sources est d'abord décomposé en une combinaison linéaire de fonctions de base spatiales dont les coefficients sont définis en rétropropageant les pressions mesurées par un réseau de microphones sur le domaine source. Cela conduit à une formulation similaire, mais pas identique, à la séparation aveugle de sources. Dans la seconde étape, ces coefficients sont séparés en variables latentes décorrélées, affectées à des "sources virtuelles" incohérentes. Il est montré que ces dernières sont définies par une rotation arbitraire. Un ensemble unique de sources sonores est finalement résolu par la recherche de la rotation (par gradient conjugué dans la variété Stiefel des matrices unitaires) qui minimise certains critères spatiaux, tels que la variance spatiale, l'entropie spatiale, ou l'orthogonalité spatiale. Il en résulte la proposition de trois critères de séparation à savoir la "moindre variance spatiale", la "moindre entropie spatiale", et la "décorrélation spatiale", respectivement. De plus, la condition sous laquelle la décorrélation classique (analyse en composantes principales) peut résoudre le problème est établit de une manière rigoureuse. Le même concept d'entropie spatiale, qui est au coeur de cette thèse, est également iv exploité dans la définition d'un nouveau critère, la courbe en L entropique, qui permet de déterminer le nombre de sources sonores actives sur le domaine source d'intérêt. L'idée consiste à considérer le nombre de sources qui réalise le meilleur compromis entre une faible entropie spatiale (comme prévu à partir de sources compactes) et une faible entropie statistique (comme prévu à partir d'une faible erreur résiduelle). La méthode proposée est validée à la fois sur des expériences de laboratoire et des données numériques et illustrée par un exemple industriel concernant la classification des sources sonores sur la face supérieure d'un moteur Diesel. La méthodologie peut également séparer, de façon très précise, des sources dont les amplitudes sont de 40 dB inférieur aux sources les plus fortes. Aussi, la robustesse vis-à-vis de l'estimation du nombre de sources actives, de la distance entre le domaine source d'intérêt et le réseau de microphones, ainsi que de la taille de la fonction d'ouverture est démontrée avec succès.
|
34 |
Techniques de démodulation aveugle en interception de signaux MIMODaumont, Steredenn 04 December 2009 (has links) (PDF)
Les systèmes MIMO (Multiple Input Multiple Output) ont été proposés par le laboratoire Bell afin d'augmenter le débit des transmissions. Par la suite ces systèmes ont été utilisés pour augmenter la fiabilité de la transmission en utilisant des codes introduisant de la redondance. Cette thèse CIFRE est menée en collaboration entre la société IPSIS-IT Link (Ingénierie Pour Signaux et Systèmes) et l'équipe SCEE de Supélec membre du laboratoire IETR. L'objectif de cette thèse est de proposer des techniques d'estimation, en aveugle, des symboles transmis sur des canaux MIMO. La séparation aveugle de sources, ou BSS pour Blind Source Separation, permet d'estimer de manière aveugle, i.e. sans connaissance du canal de transmission et de symboles pilotes, les symboles transmis. C'est ce type de méthode que nous utiliserons principalement dans cette thèse. Cependant, la BSS estime les sources à une rotation et permutation près. D'autre part, les méthodes de BSS utilisant un gradient stochastique sont lentes à converger, ce qui les rend difficilement utilisables sur des canaux variant rapidement dans le temps. Ainsi, les axes de recherche exploités durant cette thèse sont : - L'exploitation de la redondance introduite par les codes STBC pour lever les ambiguïtés introduites par la BSS. - L'implémentation de certains critères de manière analytique. Les méthodes analytiques implémentées de manière adaptative convergent rapidement dans le temps, permettant ainsi une utilisation sur des canaux qui varient rapidement dans le temps. - L'initiatisation du filtre de Kalman, connu pour ses qualités de poursuite, par la séparation aveugle de sources. Ce type d'association permet de poursuivre des canaux instantanés ou convolutifs variant dans le temps.
|
35 |
Chaînes de Markov cachées et séparation non supervisée de sourcesRAFI, Selwa 11 June 2012 (has links) (PDF)
Le problème de la restauration est rencontré dans domaines très variés notamment en traitement de signal et de l'image. Il correspond à la récupération des données originales à partir de données observées. Dans le cas de données multidimensionnelles, la résolution de ce problème peut se faire par différentes approches selon la nature des données, l'opérateur de transformation et la présence ou non de bruit. Dans ce travail, nous avons traité ce problème, d'une part, dans le cas des données discrètes en présence de bruit. Dans ce cas, le problème de restauration est analogue à celui de la segmentation. Nous avons alors exploité les modélisations dites chaînes de Markov couples et triplets qui généralisent les chaînes de Markov cachées. L'intérêt de ces modèles réside en la possibilité de généraliser la méthode de calcul de la probabilité à posteriori, ce qui permet une segmentation bayésienne. Nous avons considéré ces méthodes pour des observations bi-dimensionnelles et nous avons appliqué les algorithmes pour une séparation sur des documents issus de manuscrits scannés dans lesquels les textes des deux faces d'une feuille se mélangeaient. D'autre part, nous avons attaqué le problème de la restauration dans un contexte de séparation aveugle de sources. Une méthode classique en séparation aveugle de sources, connue sous l'appellation "Analyse en Composantes Indépendantes" (ACI), nécessite l'hypothèse d'indépendance statistique des sources. Dans des situations réelles, cette hypothèse n'est pas toujours vérifiée. Par conséquent, nous avons étudié une extension du modèle ACI dans le cas où les sources peuvent être statistiquement dépendantes. Pour ce faire, nous avons introduit un processus latent qui gouverne la dépendance et/ou l'indépendance des sources. Le modèle que nous proposons combine un modèle de mélange linéaire instantané tel que celui donné par ACI et un modèle probabiliste sur les sources avec variables cachées. Dans ce cadre, nous montrons comment la technique d'Estimation Conditionnelle Itérative permet d'affaiblir l'hypothèse usuelle d'indépendance en une hypothèse d'indépendance conditionnelle
|
36 |
Séparation de Sources Dans des Mélanges non-Lineaires / Blind Source Separation in Nonlinear MixturesEhsandoust, Bahram 30 April 2018 (has links)
La séparation aveugle de sources aveugle (BSS) est une technique d’estimation des différents signaux observés au travers de leurs mélanges à l’aide de plusieurs capteurs, lorsque le mélange et les signaux sont inconnus. Bien qu’il ait été démontré mathématiquement que pour des mélanges linéaires, sous des conditions faibles, des sources mutuellement indépendantes peuvent être estimées, il n’existe dans de résultats théoriques généraux dans le cas de mélanges non-linéaires. La littérature sur ce sujet est limitée à des résultats concernant des mélanges non linéaires spécifiques.Dans la présente étude, le problème est abordé en utilisant une nouvelle approche utilisant l’information temporelle des signaux. L’idée originale conduisant à ce résultat, est d’étudier le problème de mélanges linéaires, mais variant dans le temps, déduit du problème non linéaire initial par dérivation. Il est démontré que les contre-exemples déjà présentés, démontrant l’inefficacité de l’analyse par composants indépendants (ACI) pour les mélanges non-linéaires, perdent leur validité, considérant l’indépendance au sens des processus stochastiques, au lieu de l’indépendance au sens des variables aléatoires. Sur la base de cette approche, de bons résultats théoriques et des développements algorithmiques sont fournis. Bien que ces réalisations ne soient pas considérées comme une preuve mathématique de la séparabilité des mélanges non-linéaires, il est démontré que, compte tenu de quelques hypothèses satisfaites dans la plupart des applications pratiques, elles sont séparables.De plus, les BSS non-linéaires pour deux ensembles utiles de signaux sources sont également traités, lorsque les sources sont (1) spatialement parcimonieuses, ou (2) des processus Gaussiens. Des méthodes BSS particulières sont proposées pour ces deux cas, dont chacun a été largement étudié dans la littérature qui correspond à des propriétés réalistes pour de nombreuses applications pratiques.Dans le cas de processus Gaussiens, il est démontré que toutes les applications non-linéaires ne peuvent pas préserver la gaussianité de l’entrée, cependant, si on restreint l’étude aux fonctions polynomiales, la seule fonction préservant le caractère gaussiens des processus (signaux) est la fonction linéaire. Cette idée est utilisée pour proposer un algorithme de linéarisation qui, en cascade par une méthode BSS linéaire classique, sépare les mélanges polynomiaux de processus Gaussiens.En ce qui concerne les sources parcimonieuses, on montre qu’elles constituent des variétés distinctes dans l’espaces des observations et peuvent être séparées une fois que les variétés sont apprises. À cette fin, plusieurs problèmes d’apprentissage multiple ont été généralement étudiés, dont les résultats ne se limitent pas au cadre proposé du SRS et peuvent être utilisés dans d’autres domaines nécessitant un problème similaire. / Blind Source Separation (BSS) is a technique for estimating individual source components from their mixtures at multiple sensors, where the mixing model is unknown. Although it has been mathematically shown that for linear mixtures, under mild conditions, mutually independent sources can be reconstructed up to accepted ambiguities, there is not such theoretical basis for general nonlinear models. This is why there are relatively few results in the literature in this regard in the recent decades, which are focused on specific structured nonlinearities.In the present study, the problem is tackled using a novel approach utilizing temporal information of the signals. The original idea followed in this purpose is to study a linear time-varying source separation problem deduced from the initial nonlinear problem by derivations. It is shown that already-proposed counter-examples showing inefficiency of Independent Component Analysis (ICA) for nonlinear mixtures, loose their validity, considering independence in the sense of stochastic processes instead of simple random variables. Based on this approach, both nice theoretical results and algorithmic developments are provided. Even though these achievements are not claimed to be a mathematical proof for the separability of nonlinear mixtures, it is shown that given a few assumptions, which are satisfied in most practical applications, they are separable.Moreover, nonlinear BSS for two useful sets of source signals is also addressed: (1) spatially sparse sources and (2) Gaussian processes. Distinct BSS methods are proposed for these two cases, each of which has been widely studied in the literature and has been shown to be quite beneficial in modeling many practical applications.Concerning Gaussian processes, it is demonstrated that not all nonlinear mappings can preserve Gaussianity of the input. For example being restricted to polynomial functions, the only Gaussianity-preserving function is linear. This idea is utilized for proposing a linearizing algorithm which, cascaded by a conventional linear BSS method, separates polynomial mixturesof Gaussian processes.Concerning spatially sparse sources, it is shown that spatially sparsesources make manifolds in the observations space, and can be separated once the manifolds are clustered and learned. For this purpose, multiple manifold learning problem has been generally studied, whose results are not limited to the proposed BSS framework and can be employed in other topics requiring a similar issue.
|
37 |
Modeling spatial and temporal variabilities in hyperspectral image unmixing / Modélisation de la variabilité spectrale pour le démélange d’images hyperspectralThouvenin, Pierre-Antoine 17 October 2017 (has links)
Acquises dans plusieurs centaines de bandes spectrales contiguës, les images hyperspectrales permettent d'analyser finement la composition d'une scène observée. En raison de la résolution spatiale limitée des capteurs utilisés, le spectre d'un pixel d'une image hyperspectrale résulte de la composition de plusieurs signatures associées à des matériaux distincts. À ce titre, le démélange d'images hyperspectrales vise à estimer les signatures des différents matériaux observés ainsi que leur proportion dans chacun des pixels de l'image. Pour cette analyse, il est d'usage de considérer qu'une signature spectrale unique permet de décrire un matériau donné, ce qui est généralement intrinsèque au modèle de mélange choisi. Toutefois, la signature d'un matériau présente en pratique une variabilité spectrale qui peut être significative d'une image à une autre, voire au sein d'une même image. De nombreux paramètres peuvent en être cause, tels que les conditions d'acquisitions (e.g., conditions d'illumination locales), la déclivité de la scène observée ou des interactions complexes entre la lumière incidente et les éléments observés. À défaut d'être prises en compte, ces sources de variabilité perturbent fortement les signatures extraites, tant en termes d'amplitude que de forme. De ce fait, des erreurs d'estimation peuvent apparaître, qui sont d'autant plus importantes dans le cas de procédures de démélange non-supervisées. Le but de cette thèse consiste ainsi à proposer de nouvelles méthodes de démélange pour prendre en compte efficacement ce phénomène. Nous introduisons dans un premier temps un modèle de démélange original visant à prendre explicitement en compte la variabilité spatiale des spectres purs. Les paramètres de ce modèle sont estimés à l'aide d'un algorithme d'optimisation sous contraintes. Toutefois, ce modèle s'avère sensible à la présence de variations spectrales abruptes, telles que causées par la présence de données aberrantes ou l'apparition d'un nouveau matériau lors de l'analyse d'images hyperspectrales multi-temporelles. Pour pallier ce problème, nous introduisons une procédure de démélange robuste adaptée à l'analyse d'images multi-temporelles de taille modérée. Compte tenu de la dimension importante des données étudiées, notamment dans le cas d'images multi-temporelles, nous avons par ailleurs étudié une stratégie d'estimation en ligne des différents paramètres du modèle de mélange proposé. Enfin, ce travail se conclut par l'étude d'une procédure d'estimation distribuée asynchrone, adaptée au démélange d'un grand nombre d'images hyperspectrales acquises sur une même scène à différents instants. / Acquired in hundreds of contiguous spectral bands, hyperspectral (HS) images have received an increasing interest due to the significant spectral information they convey about the materials present in a given scene. However, the limited spatial resolution of hyperspectral sensors implies that the observations are mixtures of multiple signatures corresponding to distinct materials. Hyperspectral unmixing is aimed at identifying the reference spectral signatures composing the data -- referred to as endmembers -- and their relative proportion in each pixel according to a predefined mixture model. In this context, a given material is commonly assumed to be represented by a single spectral signature. This assumption shows a first limitation, since endmembers may vary locally within a single image, or from an image to another due to varying acquisition conditions, such as declivity and possibly complex interactions between the incident light and the observed materials. Unless properly accounted for, spectral variability can have a significant impact on the shape and the amplitude of the acquired signatures, thus inducing possibly significant estimation errors during the unmixing process. A second limitation results from the significant size of HS data, which may preclude the use of batch estimation procedures commonly used in the literature, i.e., techniques exploiting all the available data at once. Such computational considerations notably become prominent to characterize endmember variability in multi-temporal HS (MTHS) images, i.e., sequences of HS images acquired over the same area at different time instants. The main objective of this thesis consists in introducing new models and unmixing procedures to account for spatial and temporal endmember variability. Endmember variability is addressed by considering an explicit variability model reminiscent of the total least squares problem, and later extended to account for time-varying signatures. The variability is first estimated using an unsupervised deterministic optimization procedure based on the Alternating Direction Method of Multipliers (ADMM). Given the sensitivity of this approach to abrupt spectral variations, a robust model formulated within a Bayesian framework is introduced. This formulation enables smooth spectral variations to be described in terms of spectral variability, and abrupt changes in terms of outliers. Finally, the computational restrictions induced by the size of the data is tackled by an online estimation algorithm. This work further investigates an asynchronous distributed estimation procedure to estimate the parameters of the proposed models.
|
38 |
Méthode géométrique de séparation de sources non-négatives : applications à l'imagerie dynamique TEP et à la spectrométrie de masse / Geometrical method for non-negative source separation : Application to dynamic PET imaging and mass spectrometryOuedraogo, Wendyam 28 November 2012 (has links)
Cette thèse traite du problème de séparation aveugle de sources non-négatives (c'est à dire des grandeurs positives ou nulles). La situation de séparation de mélanges linéaires instantanés de sources non-négatives se rencontre dans de nombreux problèmes de traitement de signal et d'images, comme la décomposition de signaux mesurés par un spectromètre (spectres de masse, spectres Raman, spectres infrarouges), la décomposition d'images (médicales, multi-spectrale ou hyperspectrales) ou encore l'estimation de l'activité d'un radionucléide. Dans ces problèmes, les grandeurs sont intrinsèquement non-négatives et cette propriété doit être préservée lors de leur estimation, car c'est elle qui donne un sens physique aux composantes estimées. La plupart des méthodes existantes de séparation de sources non-négatives requièrent de ``fortes" hypothèses sur les sources (comme l'indépendance mutuelle, la dominance locale ou encore l'additivité totale des sources), qui ne sont pas toujours vérifiées en pratique. Dans ce travail, nous proposons une nouvelle méthode de séparation de sources non-négatives fondée sur la répartition géométrique du nuage des observations. Les coefficients de mélange et les sources sont estimées en cherchant le cône simplicial d'ouverture minimale contenant le nuage des observations. Cette méthode ne nécessite pas l'indépendance mutuelle des sources, ni même leur décorrélation; elle ne requiert pas non plus la dominance locale des sources, ni leur additivité totale. Une seule condition est nécessaire et suffisante: l'orthant positif doit être l'unique cône simplicial d'ouverture minimale contenant le nuage de points des signaux sources. L'algorithme proposé est évalué avec succès dans deux situations de séparation de sources non-négatives de nature très différentes. Dans la première situation, nous effectuons la séparation de spectres de masse mesurés à la sortie d'un chromatographe liquide haute précision, afin d'identifier et quantifier les différents métabolites (petites molécules) présents dans l'urine d'un rat traité au phénobarbital. Dans la deuxième situation, nous estimons les différents compartiments pharmacocinétiques du radio-traceur FluoroDeoxyGlucose marqué au fluor 18 ([18F]-FDG) dans le cerveau d'un patient humain, à partir d'une série d'images 3D TEP de cet organe. Parmi ces pharmacocinétiques, la fonction d'entrée artérielle présente un grand intérêt pour l'évaluation de l'efficacité d'un traitement anti-cancéreux en oncologie. / This thesis addresses the problem of non-negative blind source separation (i.e. positive or zero quantities). The situation of linear instantaneous mixtures of non-negative sources occurs in many problems of signal and image processing, such as decompositions of signals measured by a spectrometer (mass spectra, Raman spectra, infrared spectra), decomposition of images (medical, multi-spectral and hyperspectral) or estimating of the activity of a radionuclide. In these problems, the sources are inherently non-negative and this property should be preserved during their estimation, in order to get physical meaning components. Most of existing non-negative blind source separation methods require ``strong" assumptions on sources (such as mutual independence, local dominance or total additivity), which are not always satisfied in practice. In this work, we propose a new geometrical method for separating non-negative sources. The mixing matrix and the sources are estimated by finding the minimum aperture simplicial cone containing the scatter plot of mixed data. The proposed method does not require the mutual independence of the sources, neither their decorrelation, nor their local dominance, or their total additivity. One condition is necessary and sufficient: the positive orthant must be the unique minimum aperture simplicial cone cone containing the scatter plot of the sources. The proposed algorithm is successfully evaluated in two different problems of non-negative sources separation. In the first situation, we perform the separation of mass spectra measured at the output of a liquid chromatograph to identify and quantify the different metabolites (small molecules) present in the urine of rats treated with phenobarbital . In the second situation, we estimate the different pharmacokinetics compartments of the radiotracer [18F]-FDG in human brain, from a set of 3D PET images of this organ, without blood sampling. Among these pharmacokinetics, arterial input function is of great interest to evaluate the effectiveness of anti-cancer treatment in oncology.
|
39 |
Chaînes de Markov cachées et séparation non supervisée de sources / Hidden Markov chains and unsupervised source separationRafi, Selwa 11 June 2012 (has links)
Le problème de la restauration est rencontré dans domaines très variés notamment en traitement de signal et de l'image. Il correspond à la récupération des données originales à partir de données observées. Dans le cas de données multidimensionnelles, la résolution de ce problème peut se faire par différentes approches selon la nature des données, l'opérateur de transformation et la présence ou non de bruit. Dans ce travail, nous avons traité ce problème, d'une part, dans le cas des données discrètes en présence de bruit. Dans ce cas, le problème de restauration est analogue à celui de la segmentation. Nous avons alors exploité les modélisations dites chaînes de Markov couples et triplets qui généralisent les chaînes de Markov cachées. L'intérêt de ces modèles réside en la possibilité de généraliser la méthode de calcul de la probabilité à posteriori, ce qui permet une segmentation bayésienne. Nous avons considéré ces méthodes pour des observations bi-dimensionnelles et nous avons appliqué les algorithmes pour une séparation sur des documents issus de manuscrits scannés dans lesquels les textes des deux faces d'une feuille se mélangeaient. D'autre part, nous avons attaqué le problème de la restauration dans un contexte de séparation aveugle de sources. Une méthode classique en séparation aveugle de sources, connue sous l'appellation "Analyse en Composantes Indépendantes" (ACI), nécessite l'hypothèse d'indépendance statistique des sources. Dans des situations réelles, cette hypothèse n'est pas toujours vérifiée. Par conséquent, nous avons étudié une extension du modèle ACI dans le cas où les sources peuvent être statistiquement dépendantes. Pour ce faire, nous avons introduit un processus latent qui gouverne la dépendance et/ou l'indépendance des sources. Le modèle que nous proposons combine un modèle de mélange linéaire instantané tel que celui donné par ACI et un modèle probabiliste sur les sources avec variables cachées. Dans ce cadre, nous montrons comment la technique d'Estimation Conditionnelle Itérative permet d'affaiblir l'hypothèse usuelle d'indépendance en une hypothèse d'indépendance conditionnelle / The restoration problem is usually encountered in various domains and in particular in signal and image processing. It consists in retrieving original data from a set of observed ones. For multidimensional data, the problem can be solved using different approaches depending on the data structure, the transformation system and the noise. In this work, we have first tackled the problem in the case of discrete data and noisy model. In this context, the problem is similar to a segmentation problem. We have exploited Pairwise and Triplet Markov chain models, which generalize Hidden Markov chain models. The interest of these models consist in the possibility to generalize the computation procedure of the posterior probability, allowing one to perform bayesian segmentation. We have considered these methods for two-dimensional signals and we have applied the algorithms to retrieve of old hand-written document which have been scanned and are subject to show through effect. In the second part of this work, we have considered the restoration problem as a blind source separation problem. The well-known "Independent Component Analysis" (ICA) method requires the assumption that the sources be statistically independent. In practice, this condition is not always verified. Consequently, we have studied an extension of the ICA model in the case where the sources are not necessarily independent. We have introduced a latent process which controls the dependence and/or independence of the sources. The model that we propose combines a linear instantaneous mixing model similar to the one of ICA model and a probabilistic model on the sources with hidden variables. In this context, we show how the usual independence assumption can be weakened using the technique of Iterative Conditional Estimation to a conditional independence assumption
|
40 |
Séparation aveugle de sources dans les systèmes de communication MIMOIkhlef, Aissa 19 September 2008 (has links) (PDF)
Cette thèse traite de la séparation aveugle de sources dans les systèmes de communication multiantennes à l'émission et à la réception MIMO. Nous nous intéressons au cas de signaux sources indépendants traversant un canal MIMO linéaire, instantané ou convolutif, et invariant dans le temps. Au début, nous exposons quelques outils associés à la séparation aveugle de sources. Ensuite nous considérons le cas d'un canal MIMO instantané. Nous commençons par proposer un nouvel algorithme CMA basé sur les rotations de Givens complexes. Nous proposons aussi une extension de la classe des algorithmes à nome constante CNA au cas MIMO, où à partir du critère général nous dérivons trois autres algorithmes. Enfin nous considérons le cas d'un canal MIMO convolutif. Nous proposons un nouvel algorithme permettant de contrôler le retard avec lequel les signaux sources seront récupérés. L'étude des points stationnaires du critère est également proposée.
|
Page generated in 0.1569 seconds