• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elaboration de membranes “vertes” de séparation gazeuse à base de gélatine : mécanismes de structuration, réticulation et relations structure-propriétés / Elaboration of gelatin based “green” gas separation membranes : structuring mechanisms, cross-linking and structure-properties relations

Biscarat, Jennifer 02 October 2014 (has links)
L'épuisement des ressources d'origine pétrochimique conduit à la recherche de matières premières renouvelables pour l'élaboration des membranes. La gélatine, un biopolymère abondant, sous produit de l'industrie agroalimentaire, représente grâce à ses propriétés filmogènes un candidat de choix pour l'élaboration de membranes “vertes”. L'objectif de cette thèse est l'élaboration de membranes à base de gélatine et l'étude de l'impact de la structure du matériau sur les propriétés mécaniques, thermiques, de résistance à l'eau et de transfert gazeux. Pour cela les mécanismes d'élaboration par TIG-Dry cast process ont d'abord été formalisés par l'établissement du diagramme de phase du système gélatine/eau. Puis des réticulants alternatifs au glutaraldéhyde, toxique, ont été examinés pour augmenter la résistance à l'eau de la gélatine hydrosoluble. L'acide férulique et le téréphthalaldéhyde se sont montrés les plus prometteurs et complémentaires suivant les applications visées. Les films de gélatine se sont révélés barrières aux gaz à cause de la forte cristallinité induite par la renaturation des triples hélices. L'ajout d'un élastomère de la famille des polyéther amines a permis d'augmenter drastiquement les coefficients de perméabilité du CO2 de 1,4 à 250 Barrer. L'influence de la température et de l'humidité relative des flux gazeux sur les perméabilités a également été étudiée. / Petroleum based raw materials shortage leads to investigate renewable raw materials for membrane elaboration. Gelatin, an abundant, industrial by-product is a biosourced polymer with filmogenic properties which makes it an educated choice for “green” membrane production. This thesis work aims at developing gelatin based membrane and studying the influence of the material structure on mechanical and thermal properties, water resistance and gas transport properties. Thus, the elaboration mechanisms by TIG/Dry-cast process were studied in details by establishing the phase diagram of the gelatin/water system. To improve the water resistance of the hydrosoluble gelatin, crosslinking is necessary. Alternative cross-linkers were tested to replace the glutaraldehyde, classified as toxic. Ferulic acid and terephthalaldehyde were promising and showed complementary characteristics. The high crystallinity level of gelatin films, related to their renaturation level, led to rather gas barrier properties. By adding an elastomer, polyetheramine, the permeability to CO2 increased from 1.4 to an outstanding 250 Barrer. The influence of the temperature and relative humidity of the gas flux on permeability was also studied.
2

Control of Pore Structure in Plasma-Polymerized SiOCH Films for Gas Separation / Contrôle de la porosité dans les films SiOCH de polymère-plasma pour la séparation gazeuse

Lo, Chia-Hao 19 July 2010 (has links)
La synthèse d'une membrane composite formée d'une couche fine de surface de structure très réticulée et permsélective aux gaz déposée sur un substrat poreux a été étudiée comme solution pour accroître la perméabilité aux gaz tout en conservant une sélectivité importante. Une couche mince de polymère-plasma SiOCH a été retenue comme membrane de séparation gazeuse car elle possède une structure dont l'ultramicroporisté peut être contrôlée en ajustant les paramètres du procédé plasma comme la puissance, le flux de monomère et la pression de travail. Néanmoins, dans la membrane SiOCH, la taille moyenne des pores et leur distribution sont difficiles à appréhender par des techniques de caractérisation classiques, notamment proche de la surface car elle est très fine. Ce mémoire de thèse concerne le contrôle de la structure poreuse dans une couche mince de polymère-plasma SiOCH déposée sur un substrat polymère en utilisant un précurseur organosilicié. La spectroscopie d'annihilation de positron couplée à un faisceau de positron lent a été utilisée pour identifier la microstructure de couches minces SiOCH avec la profondeur. Ceci a nécessité tout d'abord l'acquisition d'une bonne connaissance de la caractérisation de l'annihilation de positron de matériaux polymères et céramiques. Des couches minces de SiOCH conformes ou superhydrophobes (SHP) ont été obtenues à deux fréquences différentes, respectivement à 13,56 MHz ou 40 kHz. Pour une couche conforme, le type de substrat, la structure chimique du précurseur et la puissance RF sont les paramètres majeurs qui influencent la structure des pores. Quand les films de SiOCH sont composées de deux couches (couche uniforme de surface et couche de transition) déposées sur un substrat poreux, l'analyse PAS met en évidence une couche de transition large et l'ensemble possède une perméabilité aux gaz élevée grâce à la porosité de surface du support. Lors de la préparation des couches minces SHP, quand la pression totale dépasse 0,6 mbar, la nucléation en phase gaz apparaît ce qui augmente la rugosité de la surface. Ceci induit des angles de contact à l'eau supérieurs à 160° et une hystérésis d'angles de contact avancée-reculée de seulement 2°. La préservation des chaînes carbonées et la microstructure sont les facteurs déterminant pour accroître l'hydrophobicité des couches minces de SiOCH. / In gas separation, the fabrication of composite membranes consisting of a permselective thin top layer with high cross-linking structures and a porous substrate has been regarded as a solution for improving gas permeability and simultaneously retaining high selectivity. A plasma-polymerized SiOCH film has been known as an appropriate gas separation membrane because it possesses a dense structure, the crosslinking degree of which could be controlled by adjusting plasma parameters such as plasma power, monomer flow rate, and system pressure. However, the pore size and distribution in SiOCH films, especially in the region of depth profile, are difficult to measure by conventional techniques because of they are very thin.This thesis is concerned with the control of pore structure in a plasma-polymerized SiOCH film on a polymeric substrate by using an organosilicon source. The positron annihilation spectroscopy (PAS) coupled to the slow positron beam technique was used to identify the microstructure of SiOCH films as a function of depth. This step required to have a good understanding of the positron annihilation characteristics of different materials such as organic, inorganic, and hybrid materials. Depending on plasma frequency adjustments, SiOCH films with a flat and a superhydrophobic (SHP) surface were fabricated at 13.56 MHz and 40 kHz, respectively. For a flat SiOCH film, substrate type, chemical structure of precursor, and RF power were the major variables that influenced the pore structure. When SiOCH films composed of two layers (bulk and transitions layers) were deposited on porous substrates, they displayed a long transition layer based on the PAS analysis and possessed a high gas permeability due to the surface porosity of the substrate. When the precursor used possessed a cyclic ring structure, an opportunity of a break-up of the cyclic ring would increase with increasing RF power and then induce formation of new big pores. For the preparation of SHP films, when the total pressure was higher than 0.6 mbar, the gas nucleation reaction was enhanced to induce roughness on SiOCH films, and it would show a high WCA of over 160o and a low WCAH of only 2 degrees. Both the hydrocarbon preservation and microstructure were the main factors in improving the surface superhydrophobicity of SiOCH films.

Page generated in 0.12 seconds