• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 897
  • 222
  • 202
  • 167
  • 50
  • 35
  • 24
  • 22
  • 17
  • 16
  • 16
  • 12
  • 9
  • 9
  • 9
  • Tagged with
  • 2118
  • 227
  • 225
  • 222
  • 169
  • 163
  • 157
  • 148
  • 145
  • 139
  • 135
  • 135
  • 126
  • 119
  • 113
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Optimisation of MF DGNSS, maritime and aeronautical radiobeacon coverage by frequency re-assignment

Turhan, Birol Erdem January 1999 (has links)
No description available.
192

Availability, continuity, and selection of maritime DGNSS radiobeacons

Grant, Alan James January 2002 (has links)
No description available.
193

Extraction of DTM from Satellite Images Using Neural Networks

Tapper, Gustav January 2016 (has links)
This thesis presents a way to generate a Digital Terrain Model (dtm) from a Digital Surface Model (dsm) and multi spectral images (including the Near Infrared (nir) color band). An Artificial Neural Network (ann) is used to pre-classify the dsm and multi spectral images. This in turn is used to filter the dsm to a dtm. The use of an ann as a classifier provided good results. Additionally, the addition of the nir color band resulted in an improvement of the accuracy of the classifier. Using the classifier, a dtm was easily extracted without removing natural edges or height variations in the forests and cities. These challenges are handled with great satisfaction as compared to earlier methods.
194

Lessons Learned from Operating C/A-Code COTS GPS Receivers on Low-Earth Orbiting Satellites for Navigation

Wiest, Terry, Nowitzky, Thomas E., Grippando, Steven A. 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / Since June of 1993, an experimental GPS receiver system has been orbiting the earth aboard a small, low-altitude, polar-orbiting satellite called RADCAL. The purpose of the experiment was to prove the concept of using GPS for satellite navigation. If successful, the system would also provide a backup to the satellite's primary navigation beacon. The goal: provide position and velocity data to an accuracy of three to five meters, and provide attitude data to within a degree. The configuration of the RADCAL GPS experiment precluded realtime feedback loops for navigation; the data was stored and downloaded after a designated collection period. On the ground, a lengthy process was used to yield the position and attitude data days after the collection event. The GPS receivers and ground equipment were configured in several modes; they ultimately yielded a position accuracy of five meters, and attitude of two degrees. This was the original goal, and the experiment was considered successful. However, one of the receivers failed in November 1993, and the other failed in January 1995. The GPS receivers were commercially available and not spaceflight proven; they were suspected of being vulnerable to single-event upsets and latchups. This turned out to be the cause of the failure of both receivers. The interface between the GPS receivers and RADCAL's other subsystems proved to be the area which could not tolerate corrupt data. The single-event latchups problems would ultimately lead to the failure of the receivers. These difficulties, as well as other lesser obstacles, provide a host of lessons learned for future satellite navigation systems.
195

Identification of nonlinear processes in space plasma turbulence

Bates, Ian January 2003 (has links)
Frequency domain analysis tools have been developed to analyse simultaneous multi-point measurements of developed space plasma turbulence. The Coherence Length technique enables the scale length for plasma wave structures to be measured from magnetic field measurements. The coherence length defines a length scale for the measurement of wave phenomena. Single satellite measurements can be used, the technique becoming more reliable with higher numbers of satellites. The technique is used to identify coherence lengths for waves observed in the magnetic field near the bow shock by the dual AMPTE-UKSIAMPTE-IRM satellites, and for mirror wave structures observed in the magnetic field in the magnetosheath by the dual ISEE-lIISEE-2 satellites. The Transfer Function Estimation technique enables the transfer of energy between plasma waves to be measured, from simultaneous dual-point measurements, resulting in linear growth / damping rates and second-order wave coupling. The technique is improved by replacing the Least Squares method for inversion with Regularisation. The technique is applied to simultaneous magnetic field measurements near the bow shock by the AMPTE-UKSIAMPTE-IRM satellites, where a linear instability in the wave field is identified, which is attributed to an ion anisotropy instability, and accompanying sequence of second-order three-wave coupling processes is also identified, which dissipates the energy from the linear instability. The Wave vector Determination technique enables the identification of wave vectors from simultaneous four-point measurements. The availability of four-point measurements means that the reliance on Minimum Variance Analysis, and that of only being able to use magnetic field measurements, is removed, the wave vector can be determined unambiguously directly from the magnetic field measurements. The technique can identify between waves of different frequency, and waves at the same frequency but propagating in different directions. The technique is applied to simultaneous observations of the electric field by the four-point ii Cluster II satellites, enabling the determination of the wave vector and the identification of a mirror mode structure, solely from the electric field measurements. Chapter 1 introduces the solar-terrestrial environment, briefly describing exploration of this environment by man-made satellites and listing some aims of the analysis of data collected by the satellites. Chapter 2 elaborates on what is meant by data analysis; Spectral Transforms are introduced and described, with a comparison made between Fourier Transforms and Wavelet Transforms, before a review is made of current data analysis techniques for satellite data. Chapter 3 defines and focuses attention on the objectives of this thesis, which are addressed in the following three chapters. Chapter 4 investigates the coherence length of plasma waves through use of the Wavelet Transform and the Fourier Shift Theorem. Chapter 5 makes estimates of wave Transfer Functions, replacing an established Least Squares inversion technique with a Regularisation inversion. Chapter 6 uses a method to determine wave propagation directions, from multi-satellite data, that has not been applied before due to the lack of availability of suitable data sets. Chapter 7 summarises the preceding chapters. The Appendices contain reprints of papers resulting from, and relating to, this research.
196

Constrained Low-Thrust Satellite Formation-Flying Using Relative Orbit Elements : Autonomous Guidance and Control for the NetSat Satellite Formation-Flying Mission

Steindorf, Lukas January 2017 (has links)
This thesis proposes a continuous low-thrust guidance and control strategy for satellite formation-flying. Stabilizing feedback based on mean relative orbit elements and Lyapunov theory is used. A novel feedback gain matrix inspired by the fuel-optimal impulsive solution is designed to achieve near-optimal fuel consumption. A reference governor is developed to autonomously guide the spacecraft through the relative state-space in order to allow for arbitrarily constrained satellite formations. Constraints include desired  thrust levels, time constraints, passive collision avoidance and locally constrained state-space areas. Keplerian dynamics are leveraged to further decrease fuel consumption. Simulations show fuel consumptions of only 4% higher delta-v than the fuel-optimal impulsive solution. The proposed control and guidance strategy is tested in a high-fidelity orbit propagation simulation using MATLAB/Simulink. Numerical simulations include orbit perturbations such as atmospheric drag, high-order geopotential, solar radiation pressure and third-body (Moon and Sun) effects. Test cases include reconfiguration scenarios with imposed wall, thrust and time constraints and a formation maintenance experiment as flown by TanDEM-X, the TanDEM-X Autonomous Formation-Flying (TAFF) experiment.
197

The structure of alphoid satellite DNA on normal and abnormal human Y chromosomes

Oakey, Rebecca January 1989 (has links)
The long-range structure of the Y chromosome alphoid satellite DNA has been determined in the cell lines 3E7 and OXEN. Variation in alphoid DNA block size and restriction enzyme sites were observed. The alphoid block size and restriction enzyme site variations were determined for a collection of 42 normal Y chromosomes. The alphoid DNA polymorphisms observed denned 24 Y chromosome alleles. Unexpectedly, the Y alphoid DNA alleles analysed revealed two distinct groups of Y chromosomes indicating that most of the Caucasian and Asian men analysed were descended from one of two males. The structure of the alphoid DNA was determined for 25 cell lines expected to contain abnormal Y chromosomes. Six of the cell lines lacked Y chromosomes. Four lacked both alphoid DNA and Y a centromere. 13 out of the remaining 15 Y chromosomes had centromeres and Y alphoid DNA block sizes and restriction enzyme site variation similar to that of normal Y chromosome alphoid DNA. Two of the abnormal cell lines had alphoid DNA blocks significantly different from the normal Y alphoid DNA structure. These results confirm that alphoid DNA is located very close to, or at the centromere and make it a prime candidate for a functional mammalian centromere sequence.
198

InSAR measurements of volcano deformation on the Central American Volcanic Arc

Ebmeier, Susanna Kathryn January 2012 (has links)
Satellite measurements of volcano deformation have the potential to illuminate a wide range of volcanic processes and have provided us with the first opportunity to investigate volcano deformation as an arc-scale process. This thesis presents the results of an Interferometric Synthetic Aperture Radar (InSAR) survey of the Central American Volcanic Arc between 2007 and 2010. My measurements confirm a statistically significant absence of magmatic deformation in Central America relative to other well-studied volcanic arcs. I estimate a minimum detection threshold for deformation at 20 of the arc’s 26 active volcanoes using time series analysis of interferometric phase. I find that the majority (∼80%) of literature measurements of volcano deformation made at other arcs would have been possible with the average magnitude of noise in Central American volcanoes. The absence of measurable magmatic deformation in Central America may therefore be due to factors that limit the geodetic expression of magma movement, including the deep pooling of basalts and high parental melt volatile content. The quantification of measurement uncertainty also allows me to use the lack of deformation at specific erupting volcanoes to make order of magnitude estimations of the minimum depth for magma storage that would not result in measurable deformation. I present measurements and interpretation of non-magmatic deformation associated with edifice development at two Central American volcanoes: Arenal, Costa Rica and Santiaguito, Guatemala. At Arenal, I measure apparently steady slip (∼7 cm/yr) on the volcano’s western flanks, which I attribute to gravity-driven slip on the boundary between lavas emplaced over the past 50 years and older tephras and paleosols. At Santiaguito, I demonstrate the measurement of large-scale (∼10-200 m) topographic change from a small set of large baseline interferograms. Measurements of post-2000 lava fields allow me to estimate extrusion rate, map changes to flow morphology and make simultaneous measurements of lava flow thickness and subsidence rate.
199

Robust connection-less service over a packet satellite link

Samaraweera, Nihal Kithsiri Gamage January 1995 (has links)
The intention of the study presented in this thesis is to obtain an understanding of the issues involved in using connection-less services over a non-reliable satellite link and to suggest suitable solutions to enhance packet communication services. Particular attention is paid to using VSAT systems for interconnecting LANs through satellite links. A detailed study of Connection-Less Services (CLNS) and end to end transport protocols that use the CLNS over a satellite link with different propagation conditions is presented. Since most existing link, network and transport protocols were originally designed to work with terrestrial networks, they do not necessarily perform well over a satellite link. The main weaknesses in the link protocols are the insufficiency of connection-less data link services, the interaction between error recovery procedures implemented by transport layer and link layer and the interaction between different conversations due to link layer error recovery procedures. The inefficiency in the segmentation and reassembling service is the main weakness in the network protocol. The weaknesses in the transport protocols are the interaction between error recovery procedures and congestion control procedures, the significant delay in receiving feed-back from the remote receiver, the oscillating behaviour of the congestion control algorithms and the inaccuracy of round trip time estimation. Two approaches were used to improve the connection-less service over a satellite link. First, new data link protocols were developed to transparently improve the network service. The second approach was to modify transport protocols (which provide end to end transport service) to suit the characteristics of the satellite network.
200

Measuring End-to-End Ajax Performance in Broadband Satellite Networks

Nguyen, Sang Tuan 01 January 2013 (has links)
Ajax-enabled web applications represent a new breed of rich and interactive websites. Ajax prevents the reloading of entire web pages by transmitting small amounts of asynchronous data in the background, thereby allowing users to interact directly with a website without waiting for page reloads. This method masks the round trip and transmission latency of network connections. In response, attempts have been made to identify those factors that are associated with Ajax performance. Past research has studied Ajax performance and found varying degrees of performance improvement when compared with the traditional HTML request-response model. Current approaches measure the relative performance of Ajax applications against an equivalent non-Ajax application based on response size, service times, traffic patterns, response times, total byte size, and latency. Notable limitations with current approaches include the lack of a general measurement framework and empirical research examining end-to-end Ajax performance over high-delay bandwidth networks. As the use of Ajax increases, the development of a general framework for measuring end-to-end Ajax performance is warranted to better understand Ajax performance in high-delay bandwidth networks. This dissertation improves upon previous work in this field by introducing a measurement framework to facilitate the end-to-end measurement of Ajax performance in a satellite environment. This investigation's artifacts include the framework design and a proof of concept designed to validate the framework by using it to measure response time using application-level traces of actual HTTP request-response and XHR calls. This research included the development of a prototype used in conjunction with an active probing measurement tool to measure and compare overall response time of XHR and HTTP calls. The prototype was used in the proof of concept to evaluate the HTTP and XHR calls across an emulated satellite network. Subsequently, a statistical analysis was performed on the dataset collected from the proof of concept. The conclusion supported by a paired t-test indicated that Ajax performs better than HTML in two loss rates. In particular, use of DOM-based updates coupled with the XHR call in an Ajax application results in both lower mean response/request size, and lower mean user experience time. Recommendations for future research include the utilization of the framework to explore and compare additional Ajax components and/or explore the impacts of the existing work in different satellite environments.

Page generated in 0.0284 seconds