• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 46
  • 21
  • 9
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 250
  • 134
  • 121
  • 43
  • 40
  • 38
  • 38
  • 32
  • 29
  • 24
  • 21
  • 20
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Studies in Dendritic Scaffolds and Surface Functionalisation for Applications in Nanoscience

Atkinson, Sarah Jane, n/a January 2007 (has links)
Chapter 1 includes a review on dendrimers, their synthesis and applications, with a particular focus on urea-linked dendritic species. The synthetic strategy utilised in this body of work was based on the preparation of a number of branched synthetic building blocks possessing differing terminal functionality. These branched dendrons, bearing three terminal residues and based on the cheap starting material tris(hydroxymethyl)aminomethane (TRIS) 23, involved the coupling of 3.3 equivalents of an appropriately para-substituted benzoic acid chloride with BOC protected TRIS 24 in DCM in the presence of triethylamine. The p-nitro, p-methoxy and p-methyl benzoyl chloride starting materials were obtained commercially, whilst N-(4-carboxyphenyl)maleimide was synthesised according to literature procedures. The BOC protected dendrons (25–27, 34) were synthesized in yields ranging from 50–92%. Deprotection of the BOC protected dendrons 25 and 26 in DCM with TFA, followed by the addition of 1M Na2CO3 afforded the TFA salts 35 and 36, respectively. The corresponding free base amines 37 and 38 were obtained on further treatment of the TFA salts with sodium carbonate. Deprotection of the BOC protected dendrons 27 and 34 afforded the free amines 39 and 48 directly after treatment with sodium carbonate. Synthesis of functionalised branched molecules containing 6- and 9-peripheral functionalities was achieved by refluxing 2 or 3 equivalents of the free amine dendrons with the bi- or tri- functional isocyanate cores, 15 and 45, in refluxing DCM, in most cases the products precipitated from the reaction mixture after 18 h and were isolated simply by filtration, otherwise the removal of the solvent from the reaction mixture afforded the spectroscopically pure product. Conversion of the peripheral nitro functionalised species 14 and 21 to the corresponding amines occurred smoothly via hydrogenation using 5% Pd/C under elevated temperature and pressure (DMF, 55 ºC, 600 psi) and afforded the polyamine 6-mer 51 in 92% yield and the 9-mer 50 in 90% yield, respectively. Similarly, conversion of the methoxy coated 9-mer 42, to the corresponding phenolic compound (AlBr3, dodecane thiol, DCM) afforded the 9-mer polyphenol 52 in an 87% yield. All compounds prepared were fully characterised and crystal structures were obtained for 26 and 35. Chapter 2 includes a review on self-assembled monolayers of organosulfur compounds on gold, applications, patterning techniques and techniques for the characterisation of these surfaces. A number of surface monomers were successfully synthesized, to be used for various surface functionalisations, including the formation of an amine reactive N-hydroxysuccinimide (NHS) disulfide 53, via the DCC coupling of 11,11’-dithiobisundecanoic acid 54 with N-hydroxysuccinimide with an isolated yield of 30%. A novel protein-resistant monomer 58 was also synthesized from 11-undecanoic acid 55 via an acid chloride coupling with triethylene glycol monomethyl ether 58, and isolated in a 72% yield. A number of attempts were made to produce an acyl azide SAM monomer 59, with success finally achieved via the acid chloride coupling of 11,11’-dithiobisundecanoic acid 54 with 5-amino-1,3-benzenedicarbonyl diazide 62 to produce 59 with an isolated yield of ~ 30%. Gold surfaces were prepared on atomically flat silicon wafers using an argon-ion sputterer. SAM films were formed on the gold surfaces via traditional solution based self-assembly methodology. A UV patterning protocol was developed, and a successful patterning trial using the NHS terminated monomer to backfill the UV exposed areas of a dodecane thiol monolayer was achieved and visualized using AFM and fluorescence microscopy after treating the surface with aminofluorescein. The covalent attachment of green fluorescent protein to the monolayer surface via reaction with the NHS terminated monolayer was demonstrated. The fluorescence of the biomolecule was preserved. The formation of a monolayer using the acyl azide monomer 59, was characterised by contact angle and XPS analysis. However, preliminary studies into the activation of the acyl azide surface into the reactive isocyanate were unsuccessful. There is however, significant scope for further investigations into this interesting surface technology. Chapter 3 includes a review on heterobifunctional linker technology with a particular focus on amine and thiol reactive moieties and literature examples of heterobifunctional linkers of this type. Synthesis of heterobifunctional reagents such as 71 and 74 via a two step synthetic methodology involving the coupling of maleic anhydride with the parent amino-acids in acetic acid, followed by a one pot cyclisation and NHS esterification using DCC in DMF were successful, with overall yields of 9% and 32% respectively for the two reaction steps. The one pot extension of 74 with 6-aminohexanoic acid, followed by DCC, facilitated NHS esterification was achieved successfully in a yield of 30%. Attempts to extend 74 with the synthesised amino acid 88 were unsuccessful due to the insolubility of 88 in organic solvents. A different synthetic strategy was devised towards the synthesis of 85 with the coupling of 74 and mono BOC protected ethylene diamine 91 in DCM to give 93 in an isolated yield of 60%. Deprotection of the terminal amine was achieved via reaction with TFA in DCM however all attempts to prepare the free amine were unsuccessful. Subsequent attempts to couple 94 with both succinic anhydride and 92 were unsuccessful. A maleimide functionalized crown ether was synthesised as a molecule for protein modification via the reaction of 74 with 4’-aminobenzo-15-crown-5 97 to produce 98 in an 80% yield. All compounds were fully characterised with crystal structures obtained for 74, 79 and 89.
112

Polymeric Scaffolds For Bioactive Agent Delivery In Bone Tissue Engineering

Ucar, Seniz 01 October 2012 (has links) (PDF)
Tissue engineering is a multidisciplinary field that is rapidly emerging as a promising new approach in the restoration and reconstruction of tissues. In this approach, three dimensional (3D) scaffolds are of great importance. Scaffolds function both as supports for cell growth and depot for sustained release of required active agents (e.g. enzymes, genes, antibiotics, growth factors). Scaffolds should possess certain properties in accordance with usage conditions. Wet-spinning is a simple technique that has been widely used for the fabrication of porous scaffolds for tissue engineering applications. Natural polymers can effectively be used in scaffold fabrication due to their biocharacteristics. Among natural polymers, chitosan and alginate are two of the most studied ones in tissue engineering and drug delivery fields because of being biologically renewable, biodegradable, biocompatible, non-antigenic, non-toxic and biofunctional. In this study, two kinds of porous scaffolds were produced as chitosan and alginate coated chitosan fibrous scaffolds by wet-spinning technique In order to investigate the delivery characteristics of the scaffolds, loading of gentamicin as a model antibiotic and bovine serum albumin (BSA) as a model protein was carried out in different loading models. Resultant scaffolds were characterized in terms of their structural formation, biodegradation, biomineralization, water uptake and retention ability and mechanical properties. Additionally, release kinetics of gentamicin and BSA were examined. Efficiency of gentamicin on Escherichia coli (E.coli) was examined. Characterization of scaffolds revealed their adequacy to be used in bone tissue engineering applications and capability to be employed as bioactive agent delivery systems.
113

Influence of poly(N-isopropylacrylamide)-CNT-polyaniline three-dimensional electrospun microfabric scaffolds on cell growth and viability

Tiwari, Ashutosh, Sharma, Yashpal, Hattori, Shinya, Terada, Dohiko, Sharma, Ashok K., Turner, Anthony P. F., Kobayashi, Hisatoshi January 2013 (has links)
This study investigates the effect on: 1) the bulk surface; and 2) the three-dimensional non-woven microfabric scaffolds of poly(N-isopropylacylamide)-CNT-polyaniline on growth and viability of  mice fibroblast cells L929. The poly(N-isopropylacylamide)-CNT-polyaniline was prepared using coupling chemistry and electrospinning was then used for the fabrication of responsive, nonwoven microfabric scaffolds. The electrospun microfabrics were assembled in regular three-dimensional scaffolds with OD: 400-500 mm; L: 6-20 cm. Mice fibroblast cells L929 were seeded on the both poly(N-isopropylacylamide)-CNT-polyaniline bulk surface as well as non-woven microfabric scaffolds. Excellent cell proliferation and viability was observed on poly(N-isopropylacylamide)-CNT-polyaniline non-woven microfabric matrices in compare to poly(N-isopropylacylamide)-CNT-polyaniline bulk and commercially available Matrigel™ even with a range of cell lines up to 168 h. Temperature dependent cells detachment behaviour was observed on the poly(N-isopropylacylamide)-CNT-polyaniline scaffolds by varying incubation at below lower critical solution temperature (LCST) of poly(N-isopropylacylamide). The results suggest that poly(N-isopropylacylamide)-CNT-polyaniline non-woven microfabrics could be used as a smart matrices for applications in tissue engineering. / European Commission FP7 (PIIF-GA-2009-254955), JSPS, JST-CREST and MEXT
114

Development of a Biomimetic Hydrogel Scaffold as an Artificial Niche to Investigate and Direct Neural Stem Cell Behavior

January 2012 (has links)
The mature central nervous system has a very limited capacity for self-renewal and repair following injury. Neural stem cells (NSCs), however, provide a promising new therapeutic option and can be readily expanded in vitro . Towards the development of an effective therapy, greater understanding and control is needed over the mechanisms regulating the differentiation of these cells into function-restoring neurons. In vivo, the neural stem cell niche plays a critical role in directing stem cell self-renewal and differentiation. By understanding and harnessing the power of this niche, a tissue engineered system with encapsulated neural stem cells could be designed to encourage neuronal differentiation and ultimately regeneration of damaged neural tissue. Poly(ethylene glycol)-based hydrogels were used here as a platform for isolating and investigating the response of neural stem cells to various matrix, soluble, and cellular components of the niche. When covalently modified with a cyclic RGD peptide, the synthetic scaffold was demonstrated to support attachment and proliferation of a human NSC line under conditions permissive to cell growth. Under differentiating conditions, the scaffold maintained appropriate lineage potential of the cells by permitting the development of both neuronal and glial populations. Expansion and differentiation of NSCs was also observed in a more biomimetic, three dimensional environment following encapsulation within a degradable hydrogel material. To simulate the soluble signals in the niche, fibroblast growth factor and nerve growth factor were tethered to the hydrogel and shown to direct NSC proliferation and neuronal differentiation respectively. Finally, as an example of the cell-cell interactions in the niche, the pro-angiogenic capacity of encapsulated neural stem cells was evaluated both in vitro and in vivo. Ideally, the optimal scaffold design will be applied to guide NSCs in a therapeutic application. Toward this goal, a novel method was developed for encapsulation of the cells within injectable hydrogel microspheres. This technique was optimized for high cell viability and microsphere yield and was demonstrated with successful microencapsulation and delivery of neural stem cells in rodent model of ischemic stroke.
115

Biomimetic Composite Scaffolds for the Functional Tissue Engineering of Articular Cartilage

Moutos, Franklin Thomas January 2009 (has links)
<p>Articular cartilage is the connective tissue that lines the ends of long bones in diarthrodial joints, providing a low-friction load-bearing surface that can withstand a lifetime of loading cycles under normal conditions. Despite these unique and advantageous properties, the tissue possesses a limited capacity for self-repair due to its lack of vasculature and innervation. Total joint replacement is a well-established treatment for degenerative joint disease; however, the materials used in these procedures have a limited lifespan in vivo and will likely fail over time, requiring additional - and increasingly complicated - revision surgeries. For younger or more active patients, this risk is unacceptable. Unfortunately, alternative surgical options are not currently available, leaving pain management as the only viable treatment. In seeking to discover a new therapeutic strategy, the goal of this dissertation was to develop a functional tissue-engineered cartilage construct that may be used to resurface an entire diseased or damaged joint.</p><p> A three-dimensional (3-D) woven textile structure, produced on a custom-built miniature weaving loom, was utilized as the basis for producing novel composite scaffolds and cartilage tissue constructs that exhibited initial properties similar to those of native articular cartilage. Using polyglycolic acid (PGA) fibers combined with chondrocyte-loaded agarose or fibrin hydrogels, scaffolds were engineered with anisotropic, inhomogeneous, viscoelastic, and nonlinear characteristics prior to cultivation. However, PGA-based constructs showed a rapid loss of mechanical functionality over a 28 day culture period suggesting that the inclusion of other, less degradable, biomaterial fibers could provide more stable properties. </p><p> Retaining the original 3-D architecture and fiber/hydrogel composite construction, poly (epsilon-caprolactone) (PCL)-based scaffolds demonstrated initial biomechanical properties similar to those of PGA-based scaffolds. Long-term culture of 3-D PCL/fibrin scaffolds seeded with human adipose-derived stem cells (ASCs) showed that scaffolds maintained their baseline properties as new, collagen-rich tissue accumulated within the constructs.</p><p> In an attempt to improve the bioactivity of the PCL scaffold and further induce chondrogenic differentiation of seeded ASCs, we produced a hybrid scaffold system by embedding the 3-D woven structure within a porous matrix derived from native cartilage. We then demonstrated how this multifunctional scaffold could be molded, seeded, and cultured in order to produce an anatomically accurate tissue construct with potential for resurfacing the femoral head of a hip. </p><p>In summary, these findings provide valuable insight into a new approach for the functional tissue engineering of articular cartilage. The results of this work will hopefully lead to the discovery of new strategies for the long-term treatment of cartilage pathology.</p> / Dissertation
116

Delivery of Cdc42, Rac1, and Brain-derived Neurotrophic Factor to Promote Axonal Outgrowth After Spinal Cord Injury

Jain, Anjana 09 July 2007 (has links)
Injury severs the axons in the spinal cord causing permanent functional loss. After injury, a series of events occur around the lesion site, including the deposition of growth cone inhibitory astroglial scar tissue containing chondroitin sulfate proteoglycan (CSPG)- rich regions. It is important to encourage axons to extend through these inhibitory regions for regeneration to occur. The work presented in this dissertation investigates the effect of three proteins, constitutively active (CA)-Cdc42, CA-Rac1, and brain-derived neurotrophic factor (BDNF) on axonal outgrowth through CSPGs-rich inhibitory regions after spinal cord injury (SCI). Cdc42 and Rac1 are members of the Rho GTPase family and BDNF is a member of the neurotrophin sub-family. These three proteins affect the actin cytoskeleton dynamics. Therefore, Cdc42, Rac1, and BDNF promote axonal outgrowth. The effect of CA-Cdc42 and CA-Rac1 on neurite extension through CSPG regions was determined in an in vitro model. Rac1 and Cdc42 s ability to modulate CSPG-dependent inhibition has yet to be explored. In this study, a stripe assay was utilized to examine the effects of modulating all three Rho GTPases on neurite extension across inhibitory CSPG lanes. Alternating laminin (LN) and CSPG lanes were created and NG108-15 cells and E9 chick dorsal root ganglions (DRGs), were cultured on the lanes. Using the protein delivery agent Chariot, the neuronal response to exposure of CA and dominant negative (DN) Rho GTPases, along with the bacterial toxin C3, was determined by quantifying the percent ratio of neurites crossing the CSPG lanes. CA-Cdc42, CA-Rac1, and C3 transferase significantly increased the number of neurites crossing into the CSPG lanes compared to the negative controls for both the NG108-15 cells and the E9 chick DRGs. We also show that these mutant proteins require the delivery vehicle, Chariot, to enter the neurons and affect neurite extension. Therefore, activation of Cdc42 and Rac helps overcome the CSPG-dependent inhibition of neurite extension. In an in vivo study, CA-Cdc42 and CA-Rac1 were locally delivered into a spinal cord cavity. Additionally, BDNF was delivered to the lesion site, either individually or in combination with either CA-Cdc42 or CA-Rac1. The dorsal over-hemisection model was utilized, creating a ~2mm defect that was filled with an in situ gelling hydrogel scaffold containing lipid microtubules loaded with the protein(s) to encourage axons. The lipid microtubules enable slow release of proteins while the hydrogel serves to localize them to the lesion site and permit axonal growth. The results from this study demonstrate that groups treated with BDNF, CA-Cdc42, CA-Rac1, BDNF/CA-Cdc42, and BDNF/CA-Rac1 had significantly higher percentage of axons from the corticospinal tract (CST) that traversed the CSPG-inhibitory regions, as well as penetrate the glial scar compared to the untreated and agarose controls. Although axons from the CST tract did not infiltrate the scaffold-filled lesion, NF-160+ axons were observed in the scaffold. Treatment with BDNF, CA-Cdc42, and CA-Rac1 also reduced the inflammatory response, quantified by analyzing GFAP and CS-56 intensity for reactive astrocytes and CSPGs, respectively, at the interface of the scaffold and host tissue. Therefore, the local delivery of CA-Cdc42, CA-Rac1 and BDNF, individual and combination demonstrated the ability of axons to extend through CSPG inhibitory regions, as well as reduce the glial scar components.
117

MEMS-based nozzles and templates for the fabrication of engineered tissue constructs

Naik, Nisarga 15 November 2010 (has links)
This dissertation presents the application of MEMS-based approaches for the construction of engineered tissue substitutes. MEMS technology can offer the physical scale, resolution, and organization necessary for mimicking native tissue architecture. Micromachined nozzles and templates were explored for the fabrication of acellular, biomimetic collagenous fibrous scaffolds, microvascular tissue structures, and the combination of these structures with cell-based therapeutics. The influence of the microstructure of the tissue constructs on their macro-scale characteristics was investigated.
118

3D bioprinted hydrogel scaffolds laden with Schwann cells for use as nerve repair conduits

2015 June 1900 (has links)
The goal of nerve tissue engineering is to promote and guide axon growth across a site of nerve injury without misdirection. Bioengineered tissue scaffolds have been shown to be promising for the regeneration of damaged peripheral nerves. Schwann cells play a pivotal role following nerve injury by forming aligned “bands of Büngner” that promote and guide axon regeneration into the distal nerve segment. The incorporation of living Schwann cells into various hydrogels has therefore been urged during the fabrication of tissue engineered nerve scaffolds. The aim of this research is to characterize biomaterials suitable for 3D bioplotting of nerve repair scaffolds. Here a novel technique of scaffold fabrication has been optimized to print alginate-based three-dimensional tissue scaffolds containing hyaluronic acid and living Schwann cells. Alginate/hyaluronic acid scaffolds were successfully fabricated with good printability and cell viability. Addition of the polycation polyethyleneimine (PEI) during the fabrication process stabilized the structure of alginate through the formation of a polyelectrolyte complex and had a significant influence on the degree of swelling, degradation rate, mechanical property, and release kinetics of incorporated protein within the scaffolds. A preliminary in vivo study showed the feasibility of implanting 3D printed alginate/hyaluronic acid scaffolds as nerve conduits in Sprague-Dawley (SD) rats with resected sciatic nerves. However alginate/hyaluronic acid scaffolds were found to be unsuitable for axonal regeneration. Further in vitro culture of Schwann cells was performed in collagen type-I, fibrin, fibrin/hyaluronic acid, and their combination with alginate. It was found that Schwann cells had more favorable cell morphology in fibrin/hyaluronic acid or collagen without alginate. Schwann cell proliferation and alignment were better in fibrin/hyaluronic acid. Therefore fibrin/hyaluronic acid is more ideal than most other hydrogel formulations for use in the bioprinting of nerve repair tissue engineering scaffolds, which incorporate cellular elements. As Schwann cells also align along the long axis of the printed fibrin/hyaluronic acid strands, 3D bioprinting of multiple layers of crosslinked fibrin strands can be used to fabricate a nerve conduit mimicking the bands of Büngner.
119

The effects of problem-based learning scaffolds on cognitive load, problem-solving, and student performance within a multimedia-enhanced learning environment

Horton, Lucas Robert 03 July 2014 (has links)
Learners who are novice problem solvers often encounter difficulty when solving complex problems. One explanation for this difficulty is that the cognitive requirements of problem-solving are sufficiently high that learners easily become overwhelmed and frustrated, leading to a state known as cognitive overload in which learning is obstructed. Cognitive Load Theory is concerned with the design of instructional approaches intended to manage the cognitive load required for thinking and problem-solving tasks. Scaffolds are any kind of support that facilitates the accomplishment of a difficult task that a learner would not be able to accomplish on their own. They are potential mechanisms to support students in negotiating the potentially high cognitive load required by complex problem-solving. The purpose of this study was to examine the effects of technology-based scaffolds within a problem-based learning environment known as Alien Rescue. The study investigated the impact of scaffolds on cognitive load, problem-solving behaviors, science knowledge, and student perceptions of the learning environment. Participants for this study included sixth grade students from a suburban middle school in the southwestern United States. Student classes were assigned to one of three treatment conditions: (a) a problem constraint condition in which students were guided through a problem-solving process similar to that of an expert, (b) a prompt condition in which students were provided with guiding messages during problem-solving, and (c) a control condition with no scaffolding. All conditions participated in the use of Alien Rescue for three weeks. Measures including a self-report measure of mental effort, calculated instructional efficiency scores, problem solution scores, student activity logs, and science knowledge test performance were used to evaluate students' cognitive load, problem-solving performance, problem-solving strategies, and learning gains. An open-ended questionnaire and student interviews were used to gather data on students' perceptions of the program. Results of the study indicate statistically significant differences between treatment conditions with respect to problem-solving efficiency, student problem-solving behaviors, and scientific knowledge gain. Additionally, qualitative findings highlight problematic aspects of the highly structured condition as implemented within the classroom context while also identifying components of the learning environment that were perceived as helpful and useful to participants. Teacher interviews also provided insight into classroom implementation of the program and opportunities to further enhance scaffolds to support student learning. Implications of the study from research, instructional design, and technology perspectives are discussed along with a treatment of study limitations and opportunities for further research in this area. / text
120

Team Scaffolds: How Minimal Team Structures Enable Role-based Coordination

Valentine, Melissa A 09 October 2013 (has links)
In this dissertation, I integrate research on role-based coordination with concepts adapted from the team effectiveness literature to theorize how minimal team structures support effective coordination when people do not work together regularly. I argue that role-based coordination among relative strangers can be interpersonally challenging and propose that team scaffolds (minimal team structures that bound groups of roles rather than groups of individuals) may provide occupants with a temporary shared in-group that facilitates interaction. I develop and test these ideas in a multi-method, multi-site field study of a new work structure, called pods, that were implemented in many hospital emergency departments (EDs) and were sometimes designed to function as team scaffolds.

Page generated in 0.0194 seconds