• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 310
  • 139
  • 69
  • 44
  • 9
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 681
  • 253
  • 126
  • 123
  • 88
  • 68
  • 65
  • 63
  • 54
  • 53
  • 52
  • 50
  • 46
  • 44
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

GEOLOGY OF THE EASTERN PART OF THE BURR DIAPIR, NORTHERN FLINDERS RANGES,SOUTH AUSTRALIA

Klingmueller, Lothar Max Ludwig, 1936-, Klingmueller, Lothar Max Ludwig, 1936- January 1971 (has links)
No description available.
182

An Evaluation of Late Holocene Sea Level Rise and Anthropogenic Impacts; Jones Narrows Marsh, Chatham County, Georgia

Hughes, Jessie 14 December 2016 (has links)
A detailed record of the Late Holocene sea level rise and landscape evolution that has taken place on the Georgia coast is contained within the sedimentary stratigraphy of its salt marsh depositional basins. Global relative sea level (RSL) has risen during the Late Holocene, and the rate of rise has accelerated during the Anthropocene. Jones Narrows marsh stratigraphy and radiocarbon analysis indicate increasing rates of RSL rise for the late Holocene on the Northern Atlantic Coast of Georgia, while FPXRF analysis of the marsh sediments facilitates a chemostratigraphic study of Jones Narrows salt marsh deposition and landscape evolution. Sedimentation and hydrology at the site have been heavily influenced by recent local anthropogenic impacts, which are examined through stratigraphic and spatial methods.
183

Feições de interação vulcano-sedimentares – exemplos na Bacia Do Paraná (RS)

Rios, Fernando Rodrigues January 2017 (has links)
Com o intuito de caracterizar e reconhecer os processos formadores das feições de interação vulcano-sedimentares, optou-se pelo detalhamento de cinco áreas da borda atual da Bacia do Paraná, no estado do Rio Grande do Sul. Nessas regiões selecionadas afloram arenitos eólicos e os derrames vulcânicos, respectivamente pertencentes às Formações Botucatu e Serra Geral, Sequência Juro-Cretácea da Bacia do Paraná. Na interface entre essas duas unidades há a ocorrência de feições vulcano-sedimentares devido a interação ocasionada pelo intenso magmatismo de caráter básico e ácido, este último em menor volume, que recobriu um extenso campo de dunas eólicas em atividade. Uma variedade de estruturas vulcano-sedimentares se originaram pela interação de sedimentos consolidados ou inconsolidados, saturados ou não em água, com derrames de composição basáltica ou dacítica. As feições vulcano-sedimentares encontradas abrangem: estrias de fluxo sobre intertraps arenosos, brechas vulcânicas, brechas vulcano-sedimentares, autobrechas, diques de arenito e geodos, estas foram detalhadas por meio de técnicas de petrografia e DRX. Os processos responsáveis pela formação dessas feições são influenciados por fatores de natureza ígnea e sedimentar. Localizam-se na base e topo dos derrames e ocorrem de diferentes maneiras devido a diferenças na temperatura da lava e do tipo de sedimento em questão. Classificam-se de duas maneiras: interação do sedimento ainda úmido com a lava de temperatura elevada e parcialmente cristalizada; e a segunda refere-se a interação com o derrame já consolidado por meio de erosão e intemperismo. / In order to characterize and recognize the formation processes of the vulcano-sedimentary interaction features, five areas of the current border of the Paraná Basin in the state of Rio Grande do Sul werechosen. It was noted eolic sandstones and volcanic flows, respectively belonging to the Botucatu and Serra Geral Formations, they appear on Jurassic-Cretaceous Sequence of the Paraná Basin. At the interface between these two units there is occurrence of vulcano-sedimentary features due to the interaction caused by the intense magmatism of a basic and acidic character, the latter one has smaller volume, which covered an extensive field of dunes. A variety of vulcano-sedimentary structures originated by the interaction of consolidated or unconsolidated sediments, saturated or not in water, with flows of basaltic or dacitic composition. The vulcano-sedimentary features found include: flow streaks over sand intertraps, volcanic breccias, vulcano-sedimentary breccias, autobreccias, sandstone dikes and geodes, these were defined by petrography and XRD analysis. Processes responsible for the formation of these features are influenced by igneous and sedimentary action. They are located on the base and top of the flows occuring in different ways due to differences on lava temperature and type of sediment. They are classified in two ways: interaction of the wet sediment with the high temperature lava, partially crystallized; The second one refers to the interaction with the consolidated flow due to the erosion and weathering.
184

The Structural Evolution of the Calabrian Forearc: A Multidisciplinary Approach to Investigating Time-Transgressive Deformation in a Subduction-Rollback System

Reitz, Margaret Alison January 2015 (has links)
This dissertation investigates the temporal and spatial variations in deformation of the Calabrian forearc during the evolution of the subduction-rollback system. In addition to contributing new data to the area, I develop three strategies for understanding recent and active deformation by linking long-term structural data with short-term geomorphological data. First, setting a “baseline” of deformation is important when studying plate boundaries. Through the structural mapping of an uplifted forearc basin, I conclude that rapid rollback is characterized by tectonic quiescence in the Calabrian forearc when it is located far from collision (from ~12 Ma – ~5 Ma). This “baseline” provides a framework from which I interpret younger phases of deformation. In the middle Pliocene (~5-4 Ma), an arc-parallel shortening event characterizes the first stage of forearc collision in my field area. These folded sediments are later tilted, but structural data from the field cannot constrain the age or structure responsible for this youngest phase of deformation. The Neto River dissects this tilted surface opening up the possibly of linking structural data with geomorphic data from river erosion. I collected a transect of river sediment samples for 10Be analysis to determine variation in catchment-wide erosion rates through the modern day deformation. I, then, developed a numerical model that describes changes in erosion rate through time with the structural growth of the tilted surface. The model is the first of its kind to use catchment-wide erosion rates to constrain a structural model. The model results constrain the age of the beginning of deformation to 850 ka and suggest that a fold with a migrating hinge caused tilting of the surface. The model provides the basis for my hypothesis that the forearc is experiencing an arc-perpendicular shortening strain, which contradicts conclusions from GPS data and the well-documented extension in the western part of the forearc. To further investigate surficial deformation, I carry out geomorphic analyses of 87 river drainages. I interpret my findings in terms of structural framework and find that surficial deformation varies tremendously from east to west. The rivers draining eastward are characterized by low concavities and higher erosion rates, consistent with shortening. While just 50 km away, the westward-draining rivers are characterized by high concavities and lower erosion rates, consistent with extension. Overall, the drainages are shifting from east-draining to west-draining, likely due to the topographic growth that decreases concavities on the eastern side. Although a new interpretation, this finding is consistent with previous structural, paleomagnetic, and seismological datasets. In each of the chapters, I interpret the structural and geomorphic data in a regional framework. This extra step is critical in interpreting deformation along active plate boundaries because it is highly variable and can be seemingly contradictory. In my final chapter, I present a cross section of the plate boundary that incorporates my data and interpretations from the geomorphic results and the most recent structural event as well as data from multiple other sources (GPS, seismological, paleomagnetics, structural, tomographic, geomorphic, etc.). This approach confirms the importance of boundary conditions on deformation in a subduction-rollback system. More intriguingly, the cross-section highlights the spatial variations along the surface and with depth suggesting that there is significant interplay between active structures.
185

Environmental History of Estuarine Dissolved Oxygen Inferred from Trace-Metal Geochemistry and Organic Matter

Johnson, Geoffrey 01 May 2017 (has links)
Environmental history recorded in sediments can reconstruct estuarine water quality metrics, such as dissolved oxygen, through the use of geochemical and biological proxies. I collected sediment cores from two locations in the Coos Bay Estuary, at South Slough and Haynes Inlet, spanning from ~1680 AD to the present. To address the historical record of water column oxygen in the estuary I measured a suite of geochemical proxies including organic matter, magnetic susceptibility, and redox-sensitive metals to calibrate against a detailed 15-year record of dissolved oxygen. High visual correlation of these proxies and recent water quality supports the interpretation of long-term water quality from sediment cores. Finally, my semi-quantitative analysis describes a complex history where potential low water quality has increased at South Slough, while decreasing or staying stable at Haynes inlet over the last 300 years, though erosion indicators profoundly increase at both sites across the Euro-Amercian settlement horizon. This history was explained in terms of changing land use (logging, splash dams) effects on erosion and organic matter loading, oceanic vs terrestrial water sources, and the role of the dredged Coos Bay channel affecting the replenishment of estuary water.
186

Effet des Fluides et des Fréquences sur les propriétés élastiques des grès et carbonates / Effect of Fluids and Frequencies on Properties Elastics of sandstones and carbonates.

Pimienta, Lucas 12 February 2015 (has links)
La sismique et la sismologie sont des moyens puissants pour comprendre la croûte terrestre.Ces deux méthodes reposent notamment sur une compréhension approfondie de la propagation des ondes sismiques dans des milieux sédimentaires saturés en fluides.Ce travail a pour but de comprendre les effets statique et dynamique du fluide sur la réponse élastique de roches clastiques saturées.Deux points spécifiques de l'interaction fluide-roche sont étudiées: (i) l'intéraction physico-chimique, le « shear weakening », affectant la réponse élastique de la roche; et (ii) l'interaction mécanique, le « frequency effect », induisant une dépendance des propriétés élastiques à la fréquence de mesure.Deux types de roches sont étudiés: les grès et les calcaires.Ces échantillons de roche sont sélectionnés pour leurs propriétés isotropes et leur forte concentration en un minéral dominant: le quartz pour les grès et la calcite pour les carbonates.Le phénomène de « shear weakening » est d’abord étudié pour de très faibles saturations en eau afin de tester l’effet de l'adsorption.Aucun affaiblissement n’est mesuré dans les carbonates, au contraire un affaiblissement élastique global est observé dans certains grès : Les modules de cisaillement et d’incompressibilité sont également affectés.L'effet ne semble pas provenir d'une différence intrinsèque entre les minéraux de quartz et de calcite, mais d’une différence microstructurale entre roches. Un modèle micromécanique est développé, montrant que les deux paramètres clef sont le caractère granulaire et le degré de cimentation de la roche.Le même résultat est obtenu pour les compressibilités mesurées lors des saturations totales en eau.Ces deux études montrent que l'adsorption est la cause du « shear weakening », et implique un affaiblissement élastique global dans les roches granulaires peu cimentées (gréseuses et probablement carbonatées).L'effet de fréquence est étudié dans des grès de Fontainebleau et de Berea. Deux méthodes sont étudiées, toutes deux basées sur le principe de "stress-strain" (i.e. contrainte-déformation): l'oscillation "isotrope" (de la pression de confinement) et "déviatorique" (de la contrainte déviatorique).Ces deux modes d'oscillations sont tout d’abord calibrés à l’aide de plusieurs standards (e.g. aluminium, verre, gypse, plexiglass).Les échantillons de roche, saturés par des fluides de différentes viscosités, sont ensuite mesurés avec ces deux modes d'oscillation.Pour le premier mode d'oscillation, dit "isotrope", ce travail a permis de (i) mettre en évidence trois régimes élastiques distincts;et (ii) mesurer à la fois la conséquence (i.e. dispersion et atténuation du module d'incompressibilité) et la cause (i.e. écoulement fluide global) de la transition en fréquence entre état drainé et état non-drainé.Pour le second mode d'oscillation, dit "déviatorique", le module de Young et le coefficient de Poisson sont mesurés sur une gamme de fréquence apparente de [10-3;105] Hz.Pour un échantillon de grès de Fontainebleau, les deux transitions élastiques sont observées. Les mesures sont cohérentes avec les théories existantes.Un modèle 1D, prenant en compte les conditions de bord du système, est finalement développé. Ce modèle donne des résultats cohérents, et explique l'effet du volume mort sur les propriétés mesurées dans le cas d'une oscillation « isotrope ». / Seismics or Seismology are powerful tools to investigate Earth's crust. However, both rely on seismic waves that travelled through fluid-saturated sedimentary layers. This work, mainly experimental, aims at understanding the static and dynamic effects of the saturating fluid on the elastic response of clastic rocks.In this framework, two specific studies are emphasized:(i) the rock-fluid physico-chemical interaction, often addressed as the "shear weakening" effect, thought to affect the rock overall elastic response; and (ii) the rock-fluid mechanical interaction, addressed as "frequency effect", thought to induce a dependence of elastic properties to the measuring frequency.Two main rock types are investigated: Sandstone and Limestone. All rock samples are chosen to be isotropic and composed of a dominant mineral content, i.e. quartz for sandstone and calcite for limestone.
187

Application Of Geophysical And Geochronological Methods To Sedimentologic And Stratigraphic Problems In The Lower Cambrian Monkton Formation: Northwestern Vermont

Maguire, Henry C 01 January 2018 (has links)
The Monkton Formation of the western shelf stratigraphic sequence in Vermont (VT) is identified as a Lower Cambrian regressive sandstone unit containing parasequences recording tidal flat progradation. Previous workers identified cycles believed to represent parasequences in a portion of a 1034' deep geothermal well drilled at Champlain College in Burlington, Vermont. For this study, both outcrop and well geophysical surveys were completed to better identify gamma emission curves and relative values for parasequences and select lithologies that are indicators of bathymetry and sea level. After using physical stratigraphic techniques to assemble a composite stratigraphic section for the Monkton Formation, analysis of the gamma emission curve and relative gamma values resulted in the identification and characterization of parasequences and select lithologies within the Monkton. Interpretation of bathymetry-sensitive lithologies along with parasequence architecture and thickness trends reveals three distinctive intervals over the thickness of the Monkton. It is recognized that the succession of these intervals represents an overall decreasing rate in accommodation space generation through Monkton deposition. Previous workers have suggested that biostratigraphic relationships of the Monkton Formation to the Potsdam Group in New York (NY) suggest that that they would be at least partially correlative. To further refine age relationships and constrain and compare the provenance of the Vermont stratigraphy locally and regionally, zircon samples were collected from the Monkton and the overlying Danby Formations and radiometric age determinations were completed by laser ablation–inductively coupled plasma mass spectrometry (LA-ICPMS) at University of Arizona Laserchron Center. Zircon age probability distribution curves show two dominate age peaks between 1.05-1.09 Ga and 1.15-1.18 Ga for the Monkton and Danby suggesting either a continuity of provenance through the Cambrian or the cycling of the Monkton's sand. The 1.05-1.09 Ga age range corresponds to rocks generated during the Ottawan Orogeny while the 1.15-1.18 Ga range is associated with the Shawinigan Orogeny and anorthosite-mangerite-charnockite-granite (AMCG) plutonism. Dominant age peaks in the Vermont samples between 1.15-1.18 Ga are similar to the 1.16 Ga age peak reported by other workers from the Altona and Ausable Formations of the Potsdam Group of New York. The shared dominant age peak and close proximity of the Vermont and New York stratigraphy may suggest a primarily shared provenance.
188

Neogene tectonic and sedimentary evolution of the outer Cilicia Basin, eastern Mediterranean Sea /

Mansfield, Stacey L., January 2005 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2006. / Bibliography: leaves 238-247. Also available online.
189

Diachronous behavior of the Antarctic ice sheets: Weddell Sea, Antarctica

January 2012 (has links)
Inaccessibility due to harsh weather conditions and perennial sea ice has left the Weddell Sea embayment (WSE) vastly under-studied in comparison to other regions of Antarctica. Yet understanding its deglacial history since the Last Glacial Maximum (LGM) is vital for understanding the dynamics and stability of the Antarctic ice sheet. Additionally, the debate continues as to the magnitude and timing of West Antarctic Ice Sheet (WAIS), Antarctic Peninsula Ice Sheet (APIS) and East Antarctic Ice Sheet (EAIS) advance during the LGM. Here we present geologic and geophysical evidence from the southern and eastern continental shelves of the WSE that show diachronous retreat by the WAIS and EMS. Detailed analysis of sediment cores display a retreat stratigraphy in the WSE with distal glacimarine sediments overlying proximal glacimarine deposits and till. These results, in combination with AMS radiocarbon ages, demonstrate that the grounding line of the EAIS was very near that of present day as early as 30,476 cal yr BP and indicate little, if any, advance of the EMS during the LGM. In contrast, multibeam swath bathymetry data show mega-scale glacial lineations, indicative of grounded, flowing ice in two troughs on the southern continental shelf, which drain ice from the WAIS. Although there are no radiocarbon ages to absolutely constrain the timing of this grounding event on the southern continental shelf, we interpret the lineations as LGM age based on their pristine nature. Further, there are similar geomorphic features on the western continental margin where the LGM timing of APIS advance has been demonstrated. Thus, during the LGM, the Antarctic ice sheets behaved independently in the WSE.
190

Sedimentary environments and processes in a shallow, Gulf Coast Estuary-Lavaca Bay, Texas.

Bronikowski, Jason Lee 15 November 2004 (has links)
Sedimentation rates in sediment cores from Lavaca Bay have been high within the last 1-2 decays within the central portion of the bay, with small fluctuations from river input. Lavaca Bay is a broad, flat, and shallow (<3 m) microtidal estuary within the upper Matagorda Bay system. Marine derived sediment enters the system from Matagorda Bay, while two major rivers (Lavaca & Navidad) supply the majority of terrestrially derived sediment. With continuous sediment supply the bay showed no bathymetric change until the introduction of the shipping channel. Processes that potentially lead to sediment transport and resuspension within the bay include wind driven wave resuspension, storm surges, wind driven blowouts, and river flooding. These processes were assessed using X-radiographs, grain size profiles, and 210Pb and 137Cs geochronology of sediment diver cores. In six cores the upper 10 cm of the seabed has been physically mixed, where as the rest showed a continuous sediment accumulation rate between 0.84-1.22 cm/yr. Sidescan sonar and subbottom chirp sonar data coupled with sedimentological core and grab samples were used to map the location and delineate the sedimentary facies within the estuarine system in depths >1 m. Five sedimentary facies were identified in Lavaca Bay and adjacent bays, they are: 1) estuarine mud; 2) fluvial sand; 3) beach sand; 4) bay mouth sand; and 5) oyster biofacies. Of the five facies, Lavaca Bay consists primarily of estuarine mud (68%). Pre-Hurricane and post-Hurricane Claudette cores were obtained to observe the impact to the sedimentary processes. The north and south Lavaca Bay were eroded by 10 cm and 2-3 cm, respectively. Cox Bay and Keller Bay saw a net deposition of 2-3 cm.

Page generated in 0.0157 seconds