• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3193
  • 860
  • 431
  • 391
  • 382
  • 255
  • 100
  • 84
  • 56
  • 54
  • 51
  • 50
  • 24
  • 16
  • 16
  • Tagged with
  • 7027
  • 1820
  • 1684
  • 1133
  • 863
  • 756
  • 658
  • 507
  • 484
  • 461
  • 445
  • 425
  • 408
  • 390
  • 378
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

[en] OPTICAL SENSOR TEMPERATURE ANALYSIS USING COUPLED MODES / [pt] ANÁLISE DE UM SENSOR ÓTICO DE TEMPERATURA PELA TEORIA DOS MODOS ACOPLADOS

TARCISIO MARTINS DANTAS 15 December 2006 (has links)
[pt] Apresenta-se aqui um modelamento teórico para descontinuidades na casca de guias dielétricos, tanto para o Slab quanto para fibra ótica, propondo-se apenas estudar o comportamento do modo fundamental em ambas as estruturas. Todo o desenvolvimento é feito a partir da expansão das componentes transversais de campo segundo coeficientes de acoplamento. A análise de tais coeficientes descrevem as potências de transmissão e reflexão da descontinuidade. Em seguida, aplica-se as condições de contorno à descontinuidade para solucionar o conjunto de equações integro-diferenciais formado pela expansão. Tal modelamento é útil no desenvolvimento de sensores de temperatura onde a ponta sensora é exatamente a estrutura estudada. Comparações qualitativas são feitas entre os resultados teóricos e medidas feitas em laboratório com este tipo de sensor. / [en] We show here a theoretical model for descontinuity in clad of dielectric guides, for Slab as much as optical fiber. We just studied the behavior of dominant mode, in both structures. All development is done starting with expansion of transversal components fo field according to the coupled coefficients. The analysis of such coefficients shows the transmission powers and descontinuity reflexion. Next, we apply the boundary value problems to descontinuity to solve the sets integro-differential equations formed by the expansion. This model is useful in the development fo temperature sensors, where the sensor is exactly the studied structure. Qualitative comparisons are done between the theoretical results and the experimental measures using the kind of sensor.
302

[en] ELECTROMAGNETIC SENSOR FOR THE MEASUREMENT OF SPEED AND DIRECTION OF OCEAN STREAMS / [pt] SENSOR ELETROMAGNÉTICO PARA MEDIÇÃO DE VELOCIDADE E DIREÇÃO DE CORRENTES MARINHAS

BEATA ZOFIA FELCZAK DE BARRIOS GUNDELACH 03 January 2007 (has links)
[pt] Este trabalho examina a viabilidade de construção, utilizando tecnologia nacional, de um sensor eletromagnético de velocidade e direção de fluidos, sendo considerado o caso particular de correntes marinhas. O projeto do sensor e os problemas técnicos de produção são apresentados e discutidos, assim como as medidas efetuadas em um protótipo. Considerações gerais sobre o tratamento dos sinais fornecidos pelo sensor também são expostas. / [en] This thesis presents a study of the feasibility of industrial production of an electromagnetic sensor for the measurement of fluid flow, using national available technology. The project of a prototype is developed for the special case of marine currents. The problems concerning the project and its implementation, as well as the measurements obtained from the prototype, are presented and discussed. The sensor signals processing is also examined in its general aspects.
303

Advantages and Risks of Sensing for Cyber-Physical Security

Han, Jun 01 May 2018 (has links)
With the the emergence of the Internet-of-Things (IoT) and Cyber-Physical Systems (CPS), modern computing is now transforming from residing only in the cyber domain to the cyber-physical domain. I focus on one important aspect of this transformation, namely shortcomings of traditional security measures. Security research over the last couple of decades focused on protecting data in regard to identities or similar static attributes. However, in the physical world, data rely more on physical relationships, hence requires CPS to verify identities together with relative physical context to provide security guarantees. To enable such verification, it requires the devices to prove unique relative physical context only available to the intended devices. In this work, I study how varying levels of constraints on physical boundary of co-located devices determine the relative physical context. Specifically, I explore different application scenarios with varying levels of constraints – including smart-home, semi-autonomous vehicles, and in-vehicle environments – and analyze how different constraints affect binding identities to physical relationships, ultimately enabling IoT devices to perform such verification. Furthermore, I also demonstrate that sensing may pose risks for CPS by presenting an attack on personal privacy in a smart home environment.
304

An Energy-Efficient Target Tracking Protocol Using Wireless Sensor Networks

Mohammad Shafiei, Adel January 2015 (has links)
Target tracking using Wireless Sensor Networks (WSNs) has drawn lots of attentions after the recent advances of wireless technologies. Target tracking aims at locating one or several mobile objects and depicting their trajectories over time. The applications of Object Tracking Sensor Networks (OSTNs) include but not limited to environmental and wildlife monitoring, industrial sensing, intrusion detection, access control, traffic monitoring, patient monitoring in the health-related studies and location awareness in the battle eld. One of the most rewarding applications of target tracking is wildlife monitoring. Wildlife monitoring is used to protect the animals which are endangered to extinction. Road safety applications are another popular usage of wildlife monitoring using WSNs. In this thesis, the issues and challenges of energy-efficient wildlife monitoring and target tracking using WSNs are discussed. This study provides a survey of the proposed tracking algorithms and analyzes the advantages and disadvantages of these algorithms. Some of the tracking algorithms are proposed to increase the energy e ciency of the tracking algorithm and to prolong the network lifetime; while, other algorithms aim at improving the localization accuracy or decreasing the missing rate. Since improving the energy efficiency of the system provides more alive sensors over time to locate the target; it helps to decrease the missing rate as the network ages. Thus, this study proposes to adjust the sensing radius of the sensor nodes in real-time to decrease the sensing energy consumption and prolong the network lifetime. The proposed VAriable Radius Sensor Activation (VARSA) mechanism for target tracking using wireless sensor networks tackles the energy consumption issues due to resource constraints of the WSNs. VARSA reduces the radio covered area of each sensor node to only cover the Area of Interest (AoI) which is the location of the target in tracking applications. Thus, VARSA aims at decreasing the sensing energy consumption which leads to encreasing the network life time. In addition, VARSA decreases the missing rate over time as it provides more alive sensors to detect the target compared to previous activation algorithms as the network ages. VARSA is compared to PRediction-based Activation (PRA) and Periodic PRediction-based Activation (PPRA) algorithms which are two of the most promising algorithms proposed for sensor activation. The simulation results show that VARSA outperforms PRA and PPRA. VARSA prolongs the lifetime of the network and decreases the missing rate of the target over time.
305

KNN Query Processing in Wireless Sensor and Robot Networks

Xie, Wei January 2014 (has links)
In Wireless Sensor and Robot Networks (WSRNs), static sensors report event information to one of the robots. In the k nearest neighbour query processing problem in WSRNs, the robot receives event report needs to find exact k nearest robots (KNN) to react to the event, among those connected to it. We are interested in localized solutions, which avoid message flooding to the whole network. Several existing methods restrict the search within a predetermined boundary. Some network density-based estimation algorithms were proposed but they either result in large message transmission or require the density information of the whole network in advance which is complex to implement and lacks robustness. Algorithms with tree structures lead to the excessive energy consumption and large latency caused by structural construction. Itinerary based approaches generate large latency or unsatisfactory accuracy. In this thesis, we propose a new method to estimate a search boundary, which is a circle centred at the query point. Two algorithms are presented to disseminate the message to robots of interest and aggregate their data (e.g. the distance to query point). Multiple Auction Aggregation (MAA) is an algorithm based on auction protocol, with multiple copies of query message being disseminated into the network to get the best bidding from each robot. Partial Depth First Search (PDFS) attempts to traverse all the robots of interest with a query message to gather the data by depth first search. This thesis also optimizes a traditional itinerary-based KNN query processing method called IKNN and compares this algorithm with our proposed MAA and PDFS algorithms. The experimental results followed indicate that the overall performance of MAA and PDFS outweighs IKNN in WSRNs.
306

Energy-Aware Time Synchronization in Wireless Sensor Networks

Saravanos, Yanos 12 1900 (has links)
I present a time synchronization algorithm for wireless sensor networks that aims to conserve sensor battery power. The proposed method creates a hierarchical tree by flooding the sensor network from a designated source point. It then uses a hybrid algorithm derived from the timing-sync protocol for sensor networks (TSPN) and the reference broadcast synchronization method (RBS) to periodically synchronize sensor clocks by minimizing energy consumption. In multi-hop ad-hoc networks, a depleted sensor will drop information from all other sensors that route data through it, decreasing the physical area being monitored by the network. The proposed method uses several techniques and thresholds to maintain network connectivity. A new root sensor is chosen when the current one's battery power decreases to a designated value. I implement this new synchronization technique using Matlab and show that it can provide significant power savings over both TPSN and RBS.
307

Sensor de vazão para aplicação em sistemas microfluídicos. / Flow sensor for application in microfludic systems.

Murilo Zubioli Mielli 27 July 2012 (has links)
Este trabalho apresenta o desenvolvimento de um sensor térmico de vazão integrado a um microcanal. Todo o ciclo de desenvolvimento é abordado: conceito, modelagem e simulação, fabricação e caracterização. O sensor é composto por um filamento de níquel fabricado sobre uma lâmina de vidro que é soldada a um bloco de polidimetilsiloxano (PDMS) contendo microcanais. A aferição da vazão no interior do microcanal é feita indiretamente através da medida da troca de calor entre o filamento e o fluido. As simulações por elementos finitos mostraram que o sensor apresenta três faixas de operação, sendo que em duas delas (fluxos menores do que 20 L/min ou maiores do que 130 L/min) a resposta elétrica do sensor varia linearmente com a vazão. Diversos sensores foram fabricados seguindo o processo de fabricação proposto e alguns dispositivos foram caracterizados eletricamente, tendo sido levantadas as curvas da tensão elétrica sobre o filamento em função da vazão no microcanal. Os resultados experimentais mostraram que os sensores fabricados são capazes de medir vazões da ordem de dezenas de microlitros por minuto na faixa de operação de menor sensibilidade. Métodos de fabricação alternativos foram propostos com o intuito de aumentar a sensibilidade do sensor, produzindo filamentos auto-sustentados no interior dos microcanais. Foi proposto um modelo para simulação comportamental dos sensores otimizados por elementos concentrados e os resultados preliminares tanto de simulação quanto de fabricação desses sensores foram apresentados. / This project presents the development of a thermal flow sensor integrated into a microchannel. The whole design cycle is discussed: concept, modeling and simulation, fabrication and characterization. The sensor consists of a nickel filament fabricated on a glass substrate which is bonded to a polydimethylsiloxane (PDMS) block containing the microchannels. The flow inside the microchannel is indirectly measured through the heat exchange between the filament and the fluid. Finite methods analysis revealed that the sensor has three operating ranges and in two of them (flows below 20 ìL/min or higher than 130 ìL/min) the electric response of the sensor varies linearly with respect to the flow. Several flow sensors were fabricated according to the fabrication method presented in this project and some of them were characterized electrically. The response of the voltage on the filament as a function of the flow inside the microchannel was obtained. The experimental results demonstrated that the flow sensors could measure flow rates as small as tens of microliters per minute even when working on the less sensitive operating range. Alternative fabrication methods were proposed in order to improve the sensor sensitivity, leaving the filaments self-sustained inside the microchannels. A lumped element model was introduced in order to simulate the behavior of the optimized flow sensors. Some preliminary results of these simulations and of the fabrication processes were presented.
308

Sensor remoto de detecção de tensão / Remote sensor voltage detection

Paulo Fré 17 March 2016 (has links)
Este trabalho apresenta uma análise de um sensor remoto de detecção de tensão portátil, apresentando um estudo sobre os princípios físicos, seu funcionamento e aplicação para detecção de tensão sem contato físico, apresentando também um circuito completo e verificando seu potencial de aplicação. Foi realizada uma descrição detalhada do elemento sensor e dos circuitos que fazem parte do detector de tensão sem contato, sendo também realizada uma simulação no software PROTEUS 6.2 da Labcenter Eletronics e uma placa foi montada e testada, para a comparação dos dados simulados com o funcionamento do circuito. Os resultados mostraram que o sistema é muito eficiente ao realizar o propósito que é a detecção de tensão sem contato físico, sendo sugeridas várias aplicações. Em edificações prontas e antigas é muito comum não se ter a versão final da rede de instalação elétrica e muitas vezes acidentes acontecem no momento de uma manutenção. O sensor remoto de tensão permite a identificação de condutores mesmo que estes não estejam alimentando uma carga, sendo necessário apenas que estejam ligados à rede de energia. Nesse sentido, verificou-se com sucesso que o detector estudado é aplicável na localização de condutores embutidos, detecção de tensão em condutores, localização de interrupções em condutores. / This paper presents an analysis of a remote sensor portable voltage detection, presenting a study on the physical principles, the functioning and application for voltage detection without physical contact, while setting a complete circuit and checking its application potential. A detailed description of the sensor element and circuit forming part of the non-contact voltage detector, a simulation and is also held in PROTEUS software 6.2 of Labcenter Electronics and a plate was assembled and tested, for comparing the simulated data was performed with the operation of the circuit. The results showed that the system is very effective in accomplishing the purpose is that the voltage detection without physical contact, and suggested various applications. In ready and old buildings it is very common not to have a final version of the wiring network and often accidents happen at the time of maintenance. The remote voltage sensor allows the identification of drivers even if they are not feeding a load, requiring only that are connected to the power grid. Accordingly, we have been successfully studied the detector fits in the specific application location of embedded conductors, voltage detection conductors, locating breaks in conductors.
309

Dynamic Approaches to Improve Sensitivity and Performance of Resonant MEMS Sensors

Jaber, Nizar 11 1900 (has links)
The objective of this dissertation is to investigate several dynamical approaches aiming to improve the sensitivity and performance of microelectromechanical systems (MEMS) resonant sensors. Resonant sensors rely on tracking shifts in the dynamic features of microstructures during sensing, such as their resonance frequency. We aim here to demonstrate analytically and experimentally several new concepts aiming to sharpen their response, enhance the signal to noise ratio, and demonstrate smart functionalities combined into a single resonator. The dissertation starts with enhancing the excitations of the higher order modes of vibrations of clamped-clamped microbeam resonators. The concept is based on using partial electrodes with shapes that induce strong excitation of the mode of interest. Using a half electrode, the second mode is excited with a high amplitude of vibration. Also, using a two-third electrode configuration is shown to amplify the third mode resonance amplitude compared with the full electrode under the same electrical loading conditions. Then, we demonstrate the effectiveness of higher order mode excitation and metal organic frameworks (MOFs) functionalization for improving the sensitivity and selectivity of resonant gas sensors. Also, using a single mode only, we show the possibility of realizing a smart switch triggered upon exceeding a threshold mass when operating the resonator near the dynamic pull-in instability. The second part of the dissertation deals with the dynamics of the microbeam under a two-source harmonic excitation. We experimentally demonstrate resonances of an additive and subtractive type. It is shown that by properly tuning the frequency and amplitude of the excitation force, the frequency bandwidth of the resonator is controlled. Finally, we employ the multimode excitation of a single resonator to demonstrate smart functionalities. By monitoring the frequency shifts of two modes, we experimentally demonstrate the effectiveness of this technique to measure the environmental temperature and gas concentration. Also, we present a hybrid sensor and switch device, which is capable of accurately measuring gas concentration and perform switching when the concentration exceeds a specific (safe) threshold. In contrast to the single mode operation, we show that monitoring the third mode enhances sensitivity, improves accuracy, and lowers the sensor sensitivity to noise.
310

Scalable and Efficient Tasking for Dynamic Sensor Networks

Dang, Thanh Xuan 01 January 2011 (has links)
Sensor networks including opportunistic networks of sensor-equipped smartphones as well as networks of embedded sensors can enable a wide range of applications including environmental monitoring, smart grids, intelligent transportation, and healthcare. In most real-world applications, to meet end-user requirements, the network operator needs to define and update the sensors' tasks dynamically, such as updating the parameters for sensor data collection or updating the sensors' code. Tasking sensor networks is necessary to reduce the effort in programming sensor networks. However, it is challenging due to dynamics and scale in terms of number of nodes, number of tasks, and sensing regions of the networks. In addition, tasking sensor networks must also be efficient in terms of bandwidth, latency, energy consumption, and memory usage. This dissertation identifies and addresses the problems of scalability and efficiency in tasking sensor networks. The first challenge in tasking sensor networks is to define a mechanism that represents multiple tasks and sensor groups efficiently taking into account the heterogeneity and mobility of sensors deployed over a large geographical region. Another challenge in tasking sensor networks in general, and embedded sensor networks in particular, is to design protocols that can not only efficiently disseminate tasks but also maintain a consistent view of the task to be performed among inherently unreliable and resource-limited sensors. We believe that a scalable and efficient tasking framework can greatly benefit the development and deployment of sensor network applications. Our thesis is that decoupling the task specification from task implementation using a spatial two-dimensional (2D) representation of a tasking region such as maps enables scalable, efficient, and resource-adaptive tasking over heterogeneous mobile sensor networks. In addition, reducing overhead in detecting inconsistencies across nodes enables scalable and efficient task dissemination and maintenance. We present the design, implementation, and evaluation of Zoom, a multiresolution tasking framework that efficiently encapsulates multiple tasks and sensor groups for sensor networks deployed in a large geographical region. The key ideas in Zoom are (i) decoupling task specification and task implementation to support heterogeneity, (ii) using maps for representing spatial sensor groups and tasks to scale with the number of sensor groups and sensing regions, and (iii) using image encoding techniques to reduce the map size and provide adaptation to sensor platforms with different resource capabilities. We present the design, implementation, and evaluation of our protocol, DHV, which efficiently disseminates task content and ensures that all nodes have up-to-date task content in sensor networks. It achieves this by minimizing both the redundant information in each message and the number of transmitted messages in the networks. DHV has been included in the official distribution of TinyOS, a popular operating system for embedded sensor networks. As sensor networks continue to develop, they will evolve from dedicated and single-purpose systems to open and multi-purpose large scale systems. Nodes in the network will be retasked frequently to support multiple applications and multiple users. We believe that this work is an important step in enabling seamless interaction between users and sensor networks and to make sensor networks more widely adopted.

Page generated in 0.0243 seconds