• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of accumulated surface charges on partial discharge activity at micro gap delamination in epoxy GIS spacer

Okubo, Hitoshi, Mansour, Diaa-Eldin A., Kojima, Hiroki, Hayakawa, Naoki, Endo, Fumihiro 19 July 2009 (has links)
No description available.
2

Surface charge accumulation and partial discharge activity for small gaps of electrode/epoxy interface in sf6 gas

Okubo, Hitoshi, Mansour, Diaa-Eldin A., Kojima, Hiroki, Hayakawa, Naoki, Endo, Fumihiro 08 1900 (has links)
No description available.
3

Partial Discharges and Associated Mechanisms for Micro Gap Delamination at Epoxy Spacer in GIS

Okubo, Hitoshi, Endo, Fumihiro, Hayakawa, Naoki, Kojima, Hiroki, Mansour, Diaa-Eldin A 06 1900 (has links)
No description available.
4

Estimation Of Steady-state Temperature Distribution In Power Transformer By Using Finite Difference Method

Gozcu, Ferhat Can 01 February 2010 (has links) (PDF)
Estimating the temperature distribution in transformer components in the design stage and during the operation is crucial since temperatures above the thermal limits of these components might seriously damage them. Thermal models are used to predict this vital information prior to actual operations. In this study, a two-dimensional, steady-state model based on the Finite Difference Method (FDM) is proposed to estimate the temperature distribution in the three-phase, SF6 gas insulatedcooled power transformer. The model can predict the temperature distribution at the specific discredited locations in the transformer successfully. This study also compares predicted temperatures of the model proposed in this study with the results of the previous study which is based on Finite Element Method (FEM) and the results of the research performed by the designers of the transformer. The results show that FDM model proposed in this study can be used to estimate the temperature distribution in the transformer with an acceptable accuracy and can be an alternative of the previous study which is based on FEM.
5

Elimination of SF6 from transmission system equipment

Cai, Xiaolei January 2013 (has links)
Sulphur hexafluoride gas is the dominant insulation and interruption material in high voltage gas insulated substation. Its usage remains a concern of transmission system operators owing to the global warming potential of the gas. The work carried out in this thesis aims to find the environment-friendly materials that can replace SF6. These candidates are required to have a strong dielectric strength for high voltage busbar insulation and well arc extinguishing capability necessary for high voltage circuit breaker.A range of alternative insulation types including CF3I gas and its mixture, high pressure air and solid insulating foam are considered as substitute of SF6. Theoretical studies on the dimensions of busbars used in substations are carried out for these options. The dimension of the dielectric system and its ampacity of respect system are calculated using heat transfer models considering their boiling point and proper working pressure which is related with the dielectric strength of some gas.On the other hand, SF6 gas circuit breaker is extremely popular on the medium and high voltage power networks owning to its effective arc extinguishing performance. It would be ideal if a substitute material could be found for SF6 as an interruption material. Biodegradable oil PTFE ablation, other gas candidates including N2, CF3I are investigated as possible replacement of SF6 through literature study.The usage of vacuum circuit breaker is eventually capable to operate in high voltage transmission system. Simulations have been carried out with software ATP/EMTP to investigate the influence of different characteristics of vacuum circuit breaker including chopping current level, the dielectric strength of vacuum gap and the opening time. And then the probability of overvoltages when vacuum circuit breakers installed is studied by statistical study in MATLAB.

Page generated in 0.0503 seconds