• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Charge accumulation in rod-plane air gap with covered rod

Mauseth, Frank January 2007 (has links)
<p>The focus of this work has been on hybrid insulation in inhomogeneous electric fields under lightning impulse voltage stress. The principal idea behind hybrid insulation is the intentional use of surface charges to re-distribute the electric field within an insulation system. This allows a significant part of the electric stress to be transferred from the dielectric weaker gas to the dielectric stronger solid insulation thus increasing the total electric strength of the insulation system.</p><p>The concept has been theoretically and experimentally addressed by means of a hemispheric rod covered with a layer of solid insulation. Discharge activity and surface charge accumulation have been studied in an air gap by measuring the voltage and discharge current and recording the discharge activity using a high-speed digital camera. New methods have been introduced and evaluated for the evaluation of surface charge measurements.</p><p>The experiments found that the increase in positive inception voltage was considerable compared to uncovered rods. This increase varied from 35% up to 100% depending on the electrode distance. The increase in breakdown strength is higher than the increase in inception voltage and dependent on the covered length of the rod. During the application of a lightning impulse, the discharge activity spreads upwards along the rod and out into the air gap. Positive discharges form numerous branches and bridge the air gap in most cases. Negative discharges are more diffuse, less light intensive and only form a few branches around the tip of the rod where the electric field is the strongest. Discharge activity along the insulating surface has been observed where the background field is lower than the critical electric field strength. Visible discharge activity is observed where the background field is higher than 2.3 kV/mm and 2.5 kV/mm for positive and negative impulses respectively.</p><p>During the application of lightning impulses, discharge activity starts in the air gap around the tip where the electric field is highest and spreads upwards along the rod. As expected, negative charges accumulate on the surface in the case of positive impulse voltage and vice versa. However, after more powerful discharges during negative impulse voltage application, surface charges of both polarities have been observed.</p><p>Accumulated surface charges decay exponentially with a time constant τ varying from micro-seconds to hours depending on the material properties of the solid insulation. The dominating relaxation mechanism is found to be conduction through the solid insulation.</p><p>Improved methods to calculate surface charges based on probe response for a 2D axial symmetric case have been developed and evaluated. The method that is best suited for this purpose is the λ-method with truncated singular value decomposition (TSVD) as regularization.</p><p>Surface charge calculations show that the accumulated surface charges for the used configuration typically have a maximum value of 0.6 to 1.5 µC/m² and 0.4 to 1 µC/m² after positive and negative impulses respectively. The surface charge density in the areas with the highest discharge activity is relatively uniform. Further upwards along the rod, the surface charge density is reduced relatively fast towards zero, and in some cases, it changes polarity before approaching zero.</p>
2

Charge accumulation in rod-plane air gap with covered rod

Mauseth, Frank January 2007 (has links)
The focus of this work has been on hybrid insulation in inhomogeneous electric fields under lightning impulse voltage stress. The principal idea behind hybrid insulation is the intentional use of surface charges to re-distribute the electric field within an insulation system. This allows a significant part of the electric stress to be transferred from the dielectric weaker gas to the dielectric stronger solid insulation thus increasing the total electric strength of the insulation system. The concept has been theoretically and experimentally addressed by means of a hemispheric rod covered with a layer of solid insulation. Discharge activity and surface charge accumulation have been studied in an air gap by measuring the voltage and discharge current and recording the discharge activity using a high-speed digital camera. New methods have been introduced and evaluated for the evaluation of surface charge measurements. The experiments found that the increase in positive inception voltage was considerable compared to uncovered rods. This increase varied from 35% up to 100% depending on the electrode distance. The increase in breakdown strength is higher than the increase in inception voltage and dependent on the covered length of the rod. During the application of a lightning impulse, the discharge activity spreads upwards along the rod and out into the air gap. Positive discharges form numerous branches and bridge the air gap in most cases. Negative discharges are more diffuse, less light intensive and only form a few branches around the tip of the rod where the electric field is the strongest. Discharge activity along the insulating surface has been observed where the background field is lower than the critical electric field strength. Visible discharge activity is observed where the background field is higher than 2.3 kV/mm and 2.5 kV/mm for positive and negative impulses respectively. During the application of lightning impulses, discharge activity starts in the air gap around the tip where the electric field is highest and spreads upwards along the rod. As expected, negative charges accumulate on the surface in the case of positive impulse voltage and vice versa. However, after more powerful discharges during negative impulse voltage application, surface charges of both polarities have been observed. Accumulated surface charges decay exponentially with a time constant τ varying from micro-seconds to hours depending on the material properties of the solid insulation. The dominating relaxation mechanism is found to be conduction through the solid insulation. Improved methods to calculate surface charges based on probe response for a 2D axial symmetric case have been developed and evaluated. The method that is best suited for this purpose is the λ-method with truncated singular value decomposition (TSVD) as regularization. Surface charge calculations show that the accumulated surface charges for the used configuration typically have a maximum value of 0.6 to 1.5 µC/m² and 0.4 to 1 µC/m² after positive and negative impulses respectively. The surface charge density in the areas with the highest discharge activity is relatively uniform. Further upwards along the rod, the surface charge density is reduced relatively fast towards zero, and in some cases, it changes polarity before approaching zero.
3

Influence of accumulated surface charges on partial discharge activity at micro gap delamination in epoxy GIS spacer

Okubo, Hitoshi, Mansour, Diaa-Eldin A., Kojima, Hiroki, Hayakawa, Naoki, Endo, Fumihiro 19 July 2009 (has links)
No description available.
4

Charge accumulation effects on time transition of partial discharge activity at GIS spacer defects

Okubo, Hitoshi, Endo, Fumihiro, Hayakawa, Naoki, Kojima, Hiroki, Nishizawa, Kanako, Mansour, Diaa-Eldin A 02 1900 (has links)
No description available.
5

Surface charge accumulation and partial discharge activity for small gaps of electrode/epoxy interface in sf6 gas

Okubo, Hitoshi, Mansour, Diaa-Eldin A., Kojima, Hiroki, Hayakawa, Naoki, Endo, Fumihiro 08 1900 (has links)
No description available.
6

Metal oxide/organic interface investigations for photovoltaic devices

Pachoumi, Olympia January 2014 (has links)
This thesis outlines investigations of metal oxide/organic interfaces in photo-voltaic devices. It focuses on device instabilities originating from the metal oxide layer surface sensitivity and it presents suggested mechanisms behind these in- stabilities. A simple sol-gel solution deposition technique for the fabrication of stable and highly performing transparent conducting mixed metal oxides (ZnMO) is presented. It is demonstrated that the use of amorphous, mixed metal oxides allows improving the performance and stability of interfacial charge extraction layers for organic solar cells. Two novel ternary metal oxides, zinc-strontrium- oxide (ZnSrO) and zinc-barium-oxide (ZnBaO), were fabricated and their use as electron extraction layers in inverted organic photovoltaics is investigated. We show that using these ternary oxides can lead to superior devices by: prevent- ing a dipole forming between the oxide and the active organic layer in a model ZnMO/P3HT:PCBM OPV as well as lead to improved surface coverage by a self assembled monolayer and promote a significantly improved charge separation efficiency in a ZnMO/P3HT hybrid device. Additionally a spectroscopic technique allowing a versatility of characterisa- tion for long-term stability investigations of organic solar cells is reported. A device instability under broadband light exposure in vacuum conditions for an inverted ZnSrO/PTB7:PC71BM OPV is observed. Direct spectroscopic evidence and electrical characterisation indicate the formation of the PC71BM radical an- ion associated with a loss in device performance. A charge transfer mechanism between a heavily doped oxide layer and the organic layers is suggested and dis- cussed.
7

Transport elektrického náboje v tantalovém kondenzátoru / Transport of Electric Charge in Tantalum Capacitor

Pelčák, Jaromír January 2012 (has links)
The task of the thesis was studding of tantalum capacitors with solid electrolytes properties. Ta – Ta2O5 – MnO2 capacitor by its construction represents MIS structure, where tantalum anode has metal conductivity and MnO2 cathode is semiconductor. Isolation layer consists of tantalum pentoxide Ta2O5 with relative permitivity r = 27. Dielectric thickness is typically in range from 30 to 150nm. The capacitor charge is not only stored and accumulated on electrodes but also in localised states (oxide vacancies) in isolation layer. The capacitor connected in normal mode represents MIS structure polarized in reveres direction when the applied voltage higher potential barrier between semiconductor - MnO2 cathode and isolation of Ta2O5. The transport of charge carriers via isolation layer is determined by Poole-Frenkel mechanisms and tunnelling. Poole-Frenkel mechanism of charge transport is dominant in low intensity of electric field. Tunnelling determines current at higher electric field intensity. During low intensity of electric field ohmic component is also presented which is determined by volume of resistance of impurities in isolation layer due to donor states of oxygen vacancies. Based on the modelling of measured VA characteristics is possible to estimate determine dielectric thickness of Ta2O5 and determine share of Poole-Frenkelov and tunnel current and charge transportation. The thesis is described charge transport and charge concentration on tantalum capacitor in low frequency area and analysis of capacitor behaviour at frequency band. The first impulse for the thesis was an effort to create equivalent circuit diagram of tantalum capacitor in respect of its physical and electrical behaviour. There is an opportunity to study and determine electric charge transport and its accumulation based on the equivalent circuit diagram structure. There is also a chance to define and trace potential barriers and charge distribution in the capacitor structure based on an measurement and carried out experiments. This methodology and analysis consists of electrical characteristic determination to create physical model of the capacitor describing it function, properties and behaviour.

Page generated in 0.0916 seconds