11 |
Lokalizace deformace v anizotropních horninách: důsledky pro geodynamické interpretace / Localization of deformation in rocks with existing anisotropy: consequences for geodynamic interpretationsBukovská, Zita January 2015 (has links)
Localization of deformation occurs in Earth's crust as a consequence of applied stress and is widespread phenomenon that can be found in crustal rocks. Such localization of deformation can be mostly seen in a form of shear zones. Small shear zones referred as shear bands or S-C structures are often used as kinematic indicators. However, the evolution and kinematic continuity of such structures is not well identified, which makes it problematic when interpreting regional geodynamic evolution. Two possible cases were distinguished and described in this thesis: a) kinematically discontinuous S-C structures formed during two deformation events and b) kinematically continuous S-C structures formed during single deformation event. Kinematically unrelated S-C structures were studied in westernmost part of Tauern Window in Eastern Alps and in Gemer-Vepor Contact Zone in Central West Carpathians where previous geodynamic interpretations might have misinterpreted localization structures. Kinematically continuous shear bands were studied in South Armorican Shear Zone where the S-C fabrics were originally defined and described (Berthé et al., 1979). Two fabrics that crosscut each other at small angles forming S-C geometries were documented during field work and studied from macroscale down to microscale or...
|
12 |
Local Water Slamming of Nonlinear Elastic Sandwich Hulls, and Adiabatic Shear Banding in Simple Shearing Deformations of Thermoelastoviscoplastic BodiesXiao, Jian 03 May 2013 (has links)
We have developed a third-order shear and normal deformable plate/shell theory (TSNDT) incorporating all geometric nonlinearities and used it to analyze, by the finite element method (FEM), transient finite deformations of a sandwich beam with two face sheets and the core made of St. Venant-Kirchhoff materials. A triangular cohesive zone model with stress based criterion for delamination initiation and energy based relation for complete separation is used to analyze delamination failure in a beam under mixed-mode loading. We have studied transient post-buckling deformations and delamination progression in an axially compressed and initially delaminated clamped-clamped sandwich beam. The buckling load for transient deformations exceeds that for static deformations and the increase depends upon the loading rate. This FE software for analyzing deformations of sandwich beam is coupled with that based on the boundary element method (BEM) for studying time-dependent deformations of water and the coupled software is used to analyze deformations of flexible curved hulls due to water slamming loads. The water is assumed to be inviscid and incompressible and undergo irrotational deformations. The Laplace equation for the velocity potential is numerically solved by the BEM with normal velocity and pressure assumed to be continuous across the interface between the hull and the water. Challenging issues resolved in this work include finding the wetted surface of the hull, nonlinear deformations of the fluid due to convective part of acceleration, effects of geometric nonlinearities on hull\'s deformations, resolution of the jet tip, as well as the initiation and propagation of delamination between the face sheets and the core. It is found that both delamination and geometric nonlinearities significantly affect the hydrodynamic pressure acting on the hull, and transverse shear deformations contribute more to the strain energy absorbed by the core than its transverse normal deformations. <br />We have used the discontinuous basis functions to derive the Galerkin formulation of a nonlinear problem involving simple shearing deformations of a homogeneous and isotropic thermo-elasto-visco-plastic body with uniform deformations perturbed to simulate the effect of a defect. The resulting coupled nonlinear ordinary differential equations are integrated with respect to time by using the package, LSODE (Livermore Solver for Ordinary Differential Equations). Computed results showing localization of deformations into narrow regions are found to agree well with those found by the FEM, and spatial variations of the shear stress are smoother than those obtained by the FEM.<br /><br /> / Ph. D.
|
13 |
Test Specimen Design to Identify the Characteristic Length of a CuAlloy Based on Shear Band FormationSpieker, Klara Anneliese January 2021 (has links)
This thesis deals with the design process of a tensile test specimen geometry with the intention that the specimen will show failure in a shear band during a tensile test. The triggered shear band is linked to a characteristic length lc, which is required for a nonlocal approach to continuum damage mechanics that predicts the life expectancy of a combustion chamber independent of the FEM mesh size. To predict if a specimen will fail in the preferred manner, numerical simulations have been performed and were analysed with the newly defined failure-in-shear-band indicator. Ductile failure modes and the fracture process depend strongly on the stress state. Therefore the indicator is formulated as a function of the Lode parameter and the stress triaxiality. Several double-notched bar specimens have been designed with different notch radii and notch depths. The failure-in-shear-band indicator implies promising values for a small notch radius and larger notch depth. Tensile tests were performed on four specimens which successfully failed in a shear band. Furthermore, a first statement on the magnitude of the characteristic length of CuAgZr is given. / Detta arbete behandlar designprocessen för en dragprovstavskonfiguration framtagen för att uppvisa brott i ett skjuvband under draghållfasthetsprovning. Initiering av skjuvbandet är kopplat till en karakteristisk längd lc, som krävs för att kunna använda en icke lokal metod för att analysera kontinuerlig skademekanik oberoende av maskstorleken i den numeriska modellen. Metoden är utvecklad för att kunna uppskatta den förväntade livslängden för en förbränningskammare. För att förutsäga om ett provobjekt kommer att gå sönder på det sätt som önskashar datorsimuleringar utförts och analyserats med den nyligen definierade indikatorn för skjuvbrott. Plastisk deformation, och så småningom brott, är starkt beroende avspänningstillståndet. Indikatorn är därför formulerad som en funktion av en s.k. Lode parametern och det treaxliga spänningstillståndet. Flera provstavsgeometrier har utformats med dubbla brottanvisningar vars radie och storlek varierats. Indikatorn för skjuvbrott ger lovande värden för små radier och ett större anvisningsdjup. Draghållfasthetsprovning utfördes på fyra provkroppar som uppvisade önskat skjuvbrott. Dessutom erhölls en första indikation om storleken på den karakteristiska längden för CuAgZr.
|
14 |
[en] COMPUTATIONAL MODELING OF SHEAR BANDS IN PLUG SCALE / [pt] MODELAGEM COMPUTACIONAL DE BANDAS DE CISALHAMENTO EM ESCALA DE PLUGUERENAN STROLIGO BESSA DE LIMA 05 October 2021 (has links)
[pt] Bandas de cisalhamento ocorrem quando há a localização de deformações inelásticas provenientes de esforços cisalhantes em regiões estreitas de um material. Estas estruturas podem influenciar diretamente nas propriedades dos materiais, além de afetar sua integridade e contribuir para o início de falhas estruturais. Este trabalho apresenta uma metodologia para a caracterização das bandas de cisalhamento na rocha carbonática Indiana Limestone por meio de modelagens numéricas utilizando o método dos elementos finitos (MEF). Ao modelar o fenômeno de localização de deformações, o MEF apresenta algumas limitações como perda da elipticidade das equações governantes, produzindo problemas de convergência e resultados dependentes da discretização de malha. Algumas alternativas para superar estes inconvenientes são apresentadas e discutidas, com especial enfase dada à técnica de regularização viscosa utilizada nas modelagens numericas de ensaios biaxiais e triaxiais. Estudos parametricos e de sensibilidade foram conduzidos para identificar o impacto das propriedades mecânicas na ocorrencia das bandas de cisalhamento. Os resultados mostraram que as propriedades de resistência, o uso de leis de fluxo não associadas e o amolecimento por deformação são os fatores que mais influenciam na iniciação e desenvolvimento das bandas de cisalhamento. / [en] Shear bands occur when inelastic shear deformation localize in narrow regions of the material. These structures can directly influence the properties of materials, in addition to affecting their integrity and contributing to the initiation of structural failures. This study presents a methodology for the characterization of shear bands in Indiana Limestone carbonate rock through numerical modeling using the finite element method (FEM). As it is known, the numerical modeling of strain localization phenomena using FEM has some drawbacks, such as loss of ellipticity of the governing equations, triggering convergence problems and results dependent on the mesh discretization. Some alternatives to overcome these problems are presented and discussed, giving a special emphasis to the viscous regularization technique used in the numerical modeling of biaxial and triaxial tests. Parametric and sensitivity studies were performed to identify the impact of the mechanical properties on the occurrence of shear bands. The results showed that strength properties, non associative flow rules and strain-softening are the factors with larger influence on the initiation and development of shear bands.
|
15 |
Continuum-Scale Modeling of Shear Banding in Bulk Metallic Glass-Matrix CompositesGibbons, Michael P. January 2016 (has links)
No description available.
|
16 |
Fault Box Modeling of Dip Slip Faults: A Framework for Fault Box Design and Future StudiesPressnell, Hailey 01 January 2025 (has links) (PDF)
The behavior of soils during surface fault rupture is a serious concern in the planning and design of infrastructure that may be located within or near a fault zone. Challenges associated with developing mitigation measures for surface fault rupture include the uncertainty of fault rupture and the variability of fault behavior. Current analytical procedures define surface fault rupture according to the type of fault movement (strike slip, normal or reverse), the amount of displacement on the fault, and the mechanics of the material overlying the fault. The purpose of this thesis is to reconfirm analytical solutions and gain a better understanding of the mechanics of dip slip surface fault rupture. Specifically, this study focuses on analyzing the influence of soil density/stiffness and fault angle on rupture propagation and distributed surface displacements. While direct experimental results are not obtained, a constructed fault box and planned trials inform a framework for predicting the outcomes of these trials using existing literature. These prior studies provide a basis for forecasting the surface deformation patterns and propagation behavior that the planned trials would have revealed, offering valuable insights into fault rupture mechanics. The fault box, a 2-meter-long by 0.5-meter-wide fault box filled with 0.45 meters of Monterey #2/16 sand, was designed to examine the factors that influence the rupture propagation of alluvial soils overlying dip slip faults. The faulting apparatus consists of a scissor jack mechanism that replicates basal displacement by moving one half of the box relative to the stationary half at interchangeable fault angles. Planned trials involved using Monterey #2/16 sand prepared configurations of dense, loose, and layered loose-over-dense material to represent different geological conditions. In these planned experiments, ruptures would be driven until a clear shear band developed in the overlying sand and reached the surface. By synthesizing findings from prior studies, this research predicts that dense sands create concentrated shear bands with larger surface displacements and distinct surface ruptures, while loose sands result in more diffuse deformations over broader shear bands with less defined surface expressions. Additionally, shallow fault angles result in broader deformation zones, as the lower angle directs stress over a wider area. In layered soil configurations, density contrasts further influence deformation patterns, with transitions between layers influencing the extent and localization of surface displacements. These findings demonstrate that fault orientation and soil density control the nature of surface fault rupture.
|
17 |
Propriétés mécaniques des verres métalliques. Mise en forme et applications / Mechanical properties of metallic glasses - shaping and applicationsAljerf, Moustafa 12 January 2011 (has links)
Ce travail de thèse considère les modes de déformations des verres métalliques produits sous différentes formes (verres massifs, rubans et particules). La déformation hétérogène dans des échantillons massifs de verres métalliques à base de zirconium est étudiée par microscopie électronique à balayage. Le dégagement rapide de l'énergie élastique stockée sous forme de chaleur lors de la déformation est responsable de la fusion locale observée dans les bandes de cisaillement. Le calcul du profil de température autour d'une bande par un modèle analytique est cohérent avec les observations morphologiques et les rapports d'apparition de nano-cristaux dans la zone déformée. La mise en forme par recuit des rubans de verres métalliques a été étudiée. L'étude aboutit à la mise en forme sans fragilisation des rubans appartenant à différentes compositions de systèmes d'alliages dit métal-métal et métal-métalloïde. Un processus de traitement thermique est suggéré pour assurer la redistribution des contraintes imposées avant l'intervention de la fragilité thermique. Un brevet industriel basé sur ces résultats a été conjointement déposé avec un grand fabriquant de montres mécaniques. De nouveaux matériaux composites d'alliages légers commerciaux à base de Mg et d'Al renforcés par des dispersions de particules de verres métalliques ont été réalisés sans porosité. Une amélioration très nette des propriétés mécaniques est obtenue. / This thesis features the two modes of deformation of metallic glasses produced under different forms (bulk, ribbons and particles). Inhomogeneous deformation in bulk samples is studied by scanning electron microscopy. Heat generated by elastic energy release during deformation is responsible for the melting observed in shear bands, and calculations using an analytical model of the temperature profile around a band are consistent with morphological observations and reports of appearance of nano-crystals in or next to deformed areas. Shaping by annealing glassy ribbons was carried out. The study presents successful shaping without embrittlement of ribbons of different metal-metal and metal-metalloid compositions of glassy systems. A heat treatment process is suggested for redistribution of applied stresses before the intervention of thermal embrittlement. A joint patent for exploiting the findings has been filed with a major producer of mechanical watches. Development of new strong and light composite materials by dispersing glassy particles in aluminum and magnesium based matrices is presented and significant improvement in mechanical properties is obtained.
|
18 |
Hydraulic Fracturing in Particulate MaterialsChang, Hong 29 November 2004 (has links)
For more than five decades, hydraulic fracturing has been widely used to enhance oil and gas production. Hydraulic fracturing in solid materials (e.g., rock) has been studied extensively. The main goal of this thesis is a comprehensive study of the physical mechanisms of hydraulic fracturing in cohesionless sediments. For this purpose, experimental techniques are developed to quantify the initiation and propagation of hydraulic fractures in dry particulate materials. We have conducted a comprehensive experimental series by varying such controlling parameters as the properties of particulate materials and fracturing fluids, boundary conditions, initial stress states, and injection volumes and rates. In this work, we suggest principle fundamental mechanisms of hydraulic fracturing in particulate materials and determine relevant scaling relationships (e.g., the interplay between elastic and plastic processes).
The main conclusion of this work is that hydraulic fracturing in particulate materials is not only possible, but even probable if the fluid leak-off is minimized (e.g., high flow rate, high viscosity, low permeability). Another important conclusion of this work is that all parts of the particulate material are likely to be in compression. Also, the scale effect (within the range of the laboratory scales) appears to be relatively insignificant, that is, the observed features of fractures of different sizes are similar.
Based on the observed fracture geometries, and injection pressures we suggested three models of hydraulic fracturing in particulate materials. In the cavity expansion or ??e driving model, the fracturing fluid is viewed as a sheet pile (blade) that disjoints the host material, and the cavity expansion occurs at the fracture (blade) front. The shear banding model is also consistent with a compressive stress state everywhere in the particulate material and explains the commonly observed beveled fracture front. The model of induced cohesion is based on the fluid leak-off ahead of the fracture front. The induced cohesion may be caused by the tensile strain near the fracture tip (where the stress state is also compressive), which, in turn, induces the cavitation of the leaked-off fluid and hence capillary forces.
|
19 |
Microscale Physical and Numerical Investigations of Shear Banding in Granular SoilsEvans, T. Matthew 28 November 2005 (has links)
Under loading conditions found in many geotechnical structures, it is common to observe failure in zones of high localized strain called shear bands. Existing models predict these localizations, but provide little insight into the micromechanics within the shear bands. This research captures the variation in microstructure inside and outside of shear bands that were formed in laboratory plane strain and two-dimensional discrete element method (DEM) biaxial compression experiments.
Plane strain compression tests were conducted on dry specimens of Ottawa 20-30 sand to calibrate the device, assess global response repeatability, and develop a procedure to quantitatively define the onset of localization. A new methodology was employed to quantify and correct for the additional stresses imparted by the confining membrane in the vicinity of the shear band. Unsheared and sheared specimens of varying dilatancy were solidified using a two-stage resin impregnation procedure. DEM tests were performed using an innovative servo-controlled flexible lateral confinement algorithm to provide additional insights into laboratory results.
The solidified specimens were sectioned and the resulting surfaces prepared for microstructure observation using bright field microscopy and morphological analysis. Local void ratio distributions and their statistical properties were determined and compared. Microstructural parameters for subregions in a grid pattern and along predefined inclined zones were also calculated. Virtual surfaces parallel to the shear band were identified and their roughnesses assessed. Similar calculations were performed on the DEM simulations at varying strain levels to characterize the evolution of microstructure with increasing strain.
The various observations showed that the mean, standard deviation, and entropy of the local void ratio distributions all increased with increasing strain levels, particularly within regions of high local strains. These results indicate that disorder increases within a shear band and that the soil within the shear band does not adhere to the classical concept of critical state, but reaches a terminal void ratio that is largely a function of initial void ratio. Furthermore, there appears to be a transition zone between the far field and the fully formed shear block, as opposed to an abrupt delineation as traditionally inferred.
|
20 |
Estudo da influência de nanopartículas sobre o comportamento mecânico de um vidro metálico Cu45 Zr45 Al10 através de simulação de dinâmica molecularTercini, Marcela Bergamaschi January 2018 (has links)
Orientador: Prof. Dr. Alejandro Andrés Zúñiga Páez / Coorientador: Prof. Dr. Roberto Gomes de Aguiar Veiga / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Santo André, 2018. / Vidros metálicos (VM) apresentam propriedades mecânicas únicas devido a sua estrutura
desordenada (amorfa). Adicionalmente, compósitos de matriz de vidro metálico com
nanocristais (fase dispersa) podem apresentar um mecanismo de deformação plástica diferente em relação à dos vidros metálicos monolíticos. O objetivo deste trabalho foi estudar o comportamento mecânico em compressão de compósitos de matriz de VM de Cu¿Zr¿Al
contendo nanocristais de diferentes composições e tamanhos usando simulação de dinâmica
molecular. Primeiramente, uma caixa de simulação de VM com 6.750.000 átomos, de
composição Cu45Zr45Al10 foi produzida pelo método de têmpera. Posteriormente, esta caixa foi usada como matriz para produzir compósitos com as seguintes populações de nanocristais: a) 75 nanocristais de CuZr de 4 nm de diâmetro, b) 1 nanocristal de CuZr de 17 nm de diâmetro, e c) 1 nanocristal de Cu de 17 nm de diâmetro (fração volumétrica ?xada em 2%). Finalmente, todas as amostras (com e sem nanocristais) foram deformadas em compressão com uma taxa de deformação de 108 s-1. As curvas de tensão-deformação mostraram que todas as amostras atingiram a tensão máxima em ~5% de deformação; porém com valores variando entre 2,15 e 2,8 GPa. Observou-se que a variação da tensão máxima atingida dependeu principalmente de dois fatores: da existência de mecanismos de deformação plástica no interior da partícula e do processo de nucleação de bandas de cisalhamento na interfase matriz/nanocristal. Também foi verifcado que uma maior área de interfase matriz/nanocristal gerou uma maior quantidade de bandas de cisalhamento. Adicionalmente, observou-se que a concentração do poliedro icosaédrico
(0,0,12,0,0) centrado no átomo de Cu diminuiu em função da deformação e que a
região da banda de cisalhamento possuía uma menor concentração de poliedros icosaédricos
em relação às demais regiões do vidro metálico. Já as análises do campo de deslocamento
atômico mostraram que as regiões centrais das bandas de cisalhamento estavam formadas por vórtices, e que as margens das bandas estavam caracterizadas por movimentações atômicas lineares. Finalmente, a presença de nanocristais in?uenciou o padrão do ?uxo plástico e a estrutura dos vórtices no material. / Metallic glasses exhibit unique mechanical properties due their disordered structure
(amorphous). Moreover, glassy-matrix composites with embedded nanocrystals can modify the
dynamics of shear banding (plastic deformation mechanism) in relation to the one observed in monolithic metallic glasses. The objective of this work was to study the mechanical behavior in compression of amorphous Cu¿Zr¿Al composites containing nanocrystals of diferent compositions and sizes using molecular dynamics simulation. First, a metallic glass simulation box with 6,750,000 atoms and composition Cu45Zr45Al10 was produced by the quenching method. Afterwards, this box was used as matrix to produce composites with the following populations of nanocrystals: a) 75 CuZr nanocrystals of 4 nm in diameter, b) 1 CuZr
nanocrystal of 17 nm in diameter, and c) 1 Cu nanocrystal of 17 nm in diameter (volume
fraction set at 2%). Finally, all samples (with and without nanocrystals) were deformed in
compression at a strain rate of 108 s-1. The stress-strain curves showed that all samples
reached a maximum stress at ~5% strain; but with values varying between 2.15 to 2.8 GPa. It
was observed that the maximum stress reached depended mainly on two factors: the existence of plastic deformation inside the nanoparticles and the nucleation of shear bands at the matrix/nanocrystal interface. It was also verifed that a larger area of matrix-nanocrystal
interface generated a larger number of shear bands. In addition, it was observed that the
concentration of icosahedral polyhedra (0,0,12,0,0) centered in Cu atoms decreased as a
function of strain, and that the shear band had a lower concentration of icosahedral polyhedra in relation to other regions of the metallic glass. The analysis of the atomic feld displacement showed that the central regions of the shear bands were formed by vortices, and the margins of the bands were characterized by linear atomic movements. Finally, the presence of nanocrystals infuenced the plastic fow pattern and the structure of the vortices in the material.
|
Page generated in 0.0206 seconds