241 |
Analysis of a High Temperature Fission Chamber Experiment for Next Generation ReactorsTaylor, Neil Rutger January 2017 (has links)
No description available.
|
242 |
MODELING AND SIMULATION OF SINGLE SPOOL JET ENGINEKAMARAJ, JAYACHANDRAN 31 March 2004 (has links)
No description available.
|
243 |
Aircraft Gearbox Dynamics Subject to Electromechanical Actuator Regenerative Energy FlowRutledge, Matthew S. 20 December 2010 (has links)
No description available.
|
244 |
Modeling and Simulation of a Dynamic Turbofan Engine Using MATLAB/SimulinkEastbourn, Scott Michael 26 June 2012 (has links)
No description available.
|
245 |
Modelling of Hybrid Electric Vehicle Components in Modelica And Comparison with SimulinkDivecha, Avinash S. 27 September 2016 (has links)
No description available.
|
246 |
Modeling of a Proton Exchange Membrane Fuel Cell StackDeLashmutt, Timothy E. 29 December 2008 (has links)
No description available.
|
247 |
Improving the Energy Density of Hydraulic Hybrid Vehicle (HHVs) and Evaluating Plug-In HHVsZeng, Xianwu 16 June 2009 (has links)
No description available.
|
248 |
Simulation and Control System Design for Autonomous Gliding to a Given LocationRingaby, Ludvig, Schmekel, Mathias January 2021 (has links)
The aim of this project was to design a flightcontrol system with the purpose of safely guiding a glidertoward a given GPS location over a distance of at least 50km. More specifically, the aim was to develop a control systemfor autonomous gliding and implement it on a given data hubcontaining sensors, GPS-module, microcontroller and a FieldProgrammable Gate Array (FPGA). A SIMULINK simulationenvironment has been developed for simulating flight dynamicsand the digital implementation of some of the on-board hardware.The simulation environment also serves as a platform to tunecontrollers and implement most of the necessary logic forthe control system. For the reference heading, a trigonometricformula is used along with latitude/longitude coordinates tocalculate the turn-angle necessary to travel along the shortestpath between two points. Four negative feedback control loopsare used to track the reference heading and achieve maximumglide ratio. The project has been conducted with mixed success,where the implementation part of the project has suffered greatdrawbacks mainly due to problems in developing the simulationenvironment. In spite of this, the open loop simulation outputspromising results where the glider behaves as expected and isconsidered realistic enough to be a suitable environment in whichto develop a flight control system. In addition, given that thegliders geometry offers reasonable aerodynamic stability, it isshown in this thesis that the proposed control system architectureand heading reference system is sufficient to steer the glider tothe given location under calm atmospheric conditions. / M°alet med detta projekt var att utveckla ettstyrsystem för att på ett säkert sätt styra ett segelflygplan mot engiven GPS-position över ett avstånd på minst 50 km. Mer specifiktvar målet att utveckla ett styrsystem för autonom glidningoch implementera det på en given datahubb som innehållersensorer, GPS-modul, mikrokontroller och programmerbar logik(FPGA). En SIMULINK-simuleringsmiljö har utvecklats föratt simulera flygdynamiken och för digital implementering avnågra av de givna hårdvarukomponenterna. Simuleringsmiljönagerar också som en plattform för att justera regulatorer ochimplementera det mesta av den nödvändiga logiken för styrsystemet.För referensriktning används en trigonometrisk formeltillsammans med latitud/longitud koordinater för att beräknaden sväng-vinkel som krävs för att färdas längs den kortastevägen mellan två punkter. Fyra regulatorer används till attfölja rätt kompassriktining samt maximera flygtid. Projektethar genomförts med blandad framgång, där genomförandet avprojektet har blivit lidande främst på grund av problem medatt utveckla simuleringsmiljön. Trots detta ger simulersmiljönlovande resultat där segelflygplanet beter sig som förväntat ochanses därmed vara en realistisk nog plattform för att utveckla ettkontrollsystem i. Dessutom, givet att geometrin av segelflygplanetger rimlig aerodynamisk stabilitet, framgår det i denna rapportatt den föreslagna styrsystemarkitekturen och referensriktningslogikenär tillräcklig för att styra segelflygplanet till den givnapositionen under lugna atmosfäriska förhållanden. / Kandidatexjobb i elektroteknik 2021, KTH, Stockholm
|
249 |
A Tabular Expression Toolbox for Matlab/SimulinkEles, Colin J. 10 1900 (has links)
<p>Model based design has had a large impact on the process of software development in many different industries. A lack of formality in these environments can lead to incorrect software and does not facilitate the formal analysis of created models. A formal tool known as tabular expressions have been successfully used in developing safety critical systems, however insufficient tool support has hampered their wider adoption. To address this shortfall we have developed the Tabular Expression Toolbox for Matlab/Simulink.</p> <p>We have developed an intuitive user interface that allows users to easily create, modify and check the completeness and disjointness of tabular expressions using the theorem prover PVS or SMT solver CVC3. The tabular expressions are translated to m-functions allowing their seamless use with Matlab's simulation and code generation. We present a method of generating counter examples for incorrect tables and a means of effectively displaying this information to the user. We provide support for modelling inputs as floating point numbers, through subtyping a user can show the properness of a table using a more concrete representation of data. The developed tools and processes have been used in the modelling of a nuclear shutdown system as a case study of the practicality and usefulness of the tools.</p> / Master of Applied Science (MASc)
|
250 |
DESIGN, ANALYSIS, AND IMPLEMENTATION OF THE POWER TRAIN OF AN ELECTRIC RACE CARAyush Bhargava (18429309) 11 June 2024 (has links)
<p dir="ltr">The automotive industry has witnessed a significant transformation in recent years, largely
driven by the emergence of electric powertrains. These systems offer a cleaner and more efficient
alternative to traditional internal combustion engines, marking a pivotal shift towards
sustainability in the transportation sector. At the heart of electric vehicles (EVs) lies the powertrain,
a complex assembly of components tasked with converting electrical energy into mechanical
power to propel the vehicle. In the context of electric race cars, the design and optimization of the
powertrain are of utmost importance to achieve high performance on the track. The powertrain
typically consists of four major components: the motor, inverter, battery, and gearbox. Each of
these components plays a critical role in ensuring the efficient conversion and utilization of
electrical energy to drive the vehicle forward. The process of designing an electric race car
powertrain begins with a thorough understanding and explanation of each component's function
and contribution to overall performance. This foundational understanding serves as the basis for
subsequent analysis and optimization efforts. Central to the design process is the selection and
configuration of the motor and battery, two key components that heavily influence the vehicle's
performance characteristics. To facilitate this decision-making process, engineers leverage
specialized software tools such as OptimumLap, MATLAB, and Simulink. OptimumLap allows
engineers to input relevant parameters of the race car, such as its drag coefficient and frontal area,
to gain insights into its aerodynamic performance. By conducting simulations on specific race
tracks, such as the Adelaide circuit, engineers can generate valuable data representing the vehicle's
performance in terms of lap times and speed. MATLAB's Grabit tool is then utilized to extract
velocity data from the simulation results, providing crucial input for further analysis. This data is
used to create a comprehensive table of values representing the vehicle's velocity profile under
different conditions.
Finally, engineers develop a Simulink model to simulate the operation of the electric
powertrain under various scenarios. This model allows for the extraction of critical performance
metrics and parameters, enabling engineers to optimize the motor and battery configuration to meet
the specific requirements and constraints of the race car.</p>
|
Page generated in 0.0167 seconds