• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 68
  • 27
  • 11
  • 10
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 289
  • 101
  • 76
  • 47
  • 41
  • 30
  • 26
  • 25
  • 24
  • 23
  • 22
  • 20
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Estabilidade estrutural de campos de vetores suave por partes / Structural stability of piecewise smooth vector fields

Achire Quispe, Jesus Enrique, 1987- 26 August 2018 (has links)
Orientador: Marco Antonio Teixeira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T09:35:17Z (GMT). No. of bitstreams: 1 AchireQuispe_JesusEnrique_D.pdf: 1199686 bytes, checksum: 2c263eb351ad3dfa30b13e0fecc5282b (MD5) Previous issue date: 2014 / Resumo: Recentemente, a Teoria de campos descontínuos (Non-Smooth Dynamic Systems) tem-se desenvolvido rapidamente, motivado principalmente pelas aplicações na física e nas engenharias, e também pela atraente beleza matemática. Neste trabalho, consideraremos campos de vetores suaves por partes, denominados campos de Filippov, e usamos o método convexo de Filippov para definir órbita solução deste tipo de campo. Assim, órbitas soluções passando por um ponto qualquer sempre existem. Há duas principais diferenças com o clássico caso diferenciável: a primeira é que as órbitas neste caso são curvas suaves por partes, enquanto que no caso diferenciável são curvas suaves. A segunda é que as órbitas soluções não tem a propriedade da unicidade, ou seja, podem existir duas ou mais órbitas passando pelo mesmo ponto. São esses fatos que fazem essa teoria um pouco diferente da teoria clássica de campos diferenciáveis. Estamos interessados em estudar qualitativamente os campos de Filippov, especialmente os que são genéricos e estruturalmente estáveis. Assim, nesta tese descrevemos propriedades genéricas necessárias para um campo de Filippov ser estruturalmente estável. Particularmente analisamos estabilidade estrutural local de singularidades tangenciais tais como o rabo de andorinha, a dobradobra,e dobra-cúspide, e adicionalmente pseudoequilíbrios e órbitas fechadas / Abstract: Recently, the Theory of Non-smooth Dynamic Systems has been developed, motivated mostly by their applications in physics and engineering, and also by its attractive mathematical beauty. In this work, we consider piecewise-smooth vector fields, called Filippov's vector fields, and we use the Filippov's convex method to define orbits solutions of this type of vector fields. Thus, orbit solution through any point always exists. But, there are two main differences with the classic differentiable case: the first is that orbits in this case are piecewise smooth curves while that in the differentiable case they are smooth curves. The second is that there is not uniqueness of solutions, this is, it may exist two or more than two orbits passing through a point. We are interested in to study qualitatively the Filippov's vector fields, especially those thatare generic and structurally stable. Thus, in this text we describe generic properties necessaryfor a vector field to be structurally stable. In particular, we analyze local structural stability attangential singularities, such as swallowtail-regular, fold-fold, fold-cusp, and additionally pseudoequilibriumsand closed orbits / Doutorado / Matematica / Doutor em Matemática
172

Méthodes efficaces pour la diffraction acoustique en 2 et 3 dimensions : préconditionnement sur des domaines singuliers et convolution rapide. / Efficient methods for acoustic scattering in 2 and 3 dimensions : preconditioning on singular domains and fast convolution.

Averseng, Martin 14 October 2019 (has links)
Cette thèse porte sur le problème de la diffration acoustique par un obstacle et sa résolution numérique par la méthode des éléments finis de frontière. Dans les trois premiers chapitres, on s'intéresse au cas où l'obstacle possède des singularités géométriques. Nous traitons le cas particulier des singularités de bord, courbes ouvertes en dimension 2, et surfaces ouvertes en dimension 3. Nous introduisons un formalisme qui permet de retrouver les bonnes propriétés de la méthode pour des objets réguliers. Une fonction de poids est définie sur les objets diffractant, et les opérateurs intégraux usuels (simple-couche et hypersingulier) sont renormalisés de manière adéquate par ce poids. Des préconditioneurs sont proposés sous la forme de racines carrées d'opérateurs locaux. En dimension 2, nous proposons une analyse théorique et numérique complète du problème. Nous montrons en particulier que les opérateurs intégraux renormalisés font partie d'une classe d'opérateurs pseudo-différentiels sur des courbes ouvertes, que nous introduisons et étudions ici. Le calcul pseudo-différentiel ainsi développé nous permet de calculer des paramétrices des les opérateurs intégraux qui correspondent aux versions continues de nos préconditionneurs. En dimension 3, nous montrons comment ces idées se généralisent théoriquement et numériquement dans le cas pour des surfaces ouvertes. Dans le dernier chapitre, nous introduisons une nouvelle méthode de calcul rapide des convolutions par des fonctions radiales en dimension 2, l'une des tâches les plus coûteuses en temps dans la méthode des éléments finis de frontière. Notre algorithme repose sur l'algorithme de transformée de Fourier rapide non uniforme, et est la généralisation un algorithme analogue disponible en dimension 3, la décomposition creuse en sinus cardinal. / In this thesis, we are concerned with the numerical resolution of the problem of acoustic waves scattering by an obstacle in dimensions 2 and 3, with the boundary element method. In the first three chapters, we consider objects with singular geometries. We focus on the case of objects with edge singularities, first open curves in the plane, and then open surfaces in dimension 3. We present a formalism that allows to restore the good properties that held for smooth objects. A weight function is defined on the scattering object, and the usual layer potentials (single-layer and hypersingular) are adequately rescaled by this weight function. Suitable preconditioners are proposed, that take the form of square roots of local operators. In dimension 2, we give a complete theoretical and numerical analysis of the problem. We show in particular that the weighted layer potentials belong to a class of pseudo-differential operators on open curves that we define and analyze here. The pseudo-differential calculus thus developed allows us to compute parametrices for the weighted layer potentials, which correspond to the continuous versions of our preconditioners. In dimension 3, we show how those ideas can be extended theoretically and numerically, for the particular case of the scattering by an infinitely thin disk. In the last chapter, we present a new method for the rapid evaluation of discrete convolutions by radial functions in dimension 2. Such convolutions represent a computational bottleneck in the boundary element methods. Our algorithm relies on the non-uniform fast Fourier transform and generalizes to dimension 2 an analogous algorithm available in dimension 3, namely the sparse cardinal sine decomposition.
173

Adaptivní plánování trajektorie průmyslového robotu / Adaptive Planning of Industrial Robot Trajectory

Dizorzi, Matúš January 2019 (has links)
This thesis deals with the extension of the RoScan scanning system features, making its behaviour more secure and adaptivte during scanning of the object on its whole trajectory. This work contains mathematical model of said manipulator, suggested methods to ensure proper behaviour during singularities. New features were added to the RoScan system such as control panel for manipulator control including new format of trajectory log, moving closer or further away from manipulator’s end effector and non adaptive trajectory testing for singularities. Result of this work is ready-to-use.
174

Stokes' theorem and integration on integral currents / Théorème de Stokes et intégration sur les courants entiers

Julia, Antoine 09 October 2018 (has links)
Les méthodes d’intégration de jauge, telle que l’intégrale de Pfeffer sur les ensembles bornés de périmètre fini sont particulièrement adaptées à l’étude des grands théorèmes d’intégration que sont le Théorème Fondamental de l’Analyse, le Théorème de la Divergence et le Théorème de Stokes. Dans cette thèse, ces outils sont transposés à l’intégration sur des domaines singuliers, vus comme des courants entiers au sens de Federer et Fleming. On obtient un critère d’effaçabilité pour les singularités des courants considérés : les courants ayant un ensemble singulier de contenu de Minkowski relatif fini satisfont un Théorème de Stokes général, c’est le cas notamment des courants définissables dans une structure o-minimale quelconque, c’est aussi le cas de courants minimiseurs de masse sans singularité au bord. A contrario, on construit un courant de dimension 2 dans ℝ3 ayant un ensemble singulier réduit à un point, qui ne vérifie pas ce Théorème de Stokes général.Cette thèse contient aussi les définitions de méthodes d’intégration non absolument convergentes sur tout courant entier de dimension 1, ainsi que sur les courants entiers de dimension quelconque dans un espace euclidien dont les singularités sont effaçables. / Methods of gauge integration, like those developped by W. F. Pfeffer on bounded sets of finite perimeter, are well suited to the study of integration theorems, such as the Fundamental Theorem of Calculus, The Divergence Theorem and Stokes’ Theorem. In this thesis, Pfeffer Integration is transposed to the context of integral currents in the sense of Federer and Fleming. Not all integral currents are adapted to this type of gauge integration and a criterion on the singular set of the current is obtained. Well behaved currents include all 1-dimensional integral currents, integral currents definable in an o-minimal structure and mass minimizing integral currents whenever the boundary singularities are controlled. All those currents are shown to satisfy a general Stokes’ Theorem. On the other hand, an example is given of an integral current of dimension 2 in ℝ3 with only one singular point, which does not satisfy such a general Stokes-Cartan Theorem. This thesis also contains the definitions of non-absolutely convergent integrations methods on 1-dimensionalintegral currents as well as on integral currents of any dimension in Euclidean space, whenever their singular set has controlled relative Minkowski content.
175

Singularities of the Perfect Cone Compactification

Giovenzana, Luca 04 March 2021 (has links)
This thesis analyses the singularities of toroidal compactifications. Motivated by a result of Shepherd-Barron about the first Voronoi compactification of the moduli space of principally polarised abelian varieties, the object taken into consideration consists of the perfect cone (also known as first Voroni) compactification of arithmetic quotients of type IV domains. These are of importance in the context of algebraic geometry because they are used to construct moduli spaces of polarised K3 surfaces and are strongly related to moduli spaces of hyperkähler varieties of higher dimension. The local analysis of singularities of a toroidal compactification reduces to that of finite quotients of toric varieties. The main result of this thesis gives a description of the singularities of the perfect cone compactification of the moduli space of pseudo-polarised K3 surfaces of square-free degree.
176

Experimental approach to the problem of the Navier-Stokes singularities / Approche expérimentale du problème des singularités de Navier-Stokes

Debue, Paul 25 September 2019 (has links)
L’objectif de cette thèse est de chercher, dans un écoulement turbulent réel, d'éventuelles traces des singularités que pourraient développer les solutions des équations d'Euler ou de Navier-Stokes incompressibles 3D. En effet, la question de leur régularité mathématique est toujours ouverte. Dans cette thèse, on postule l'existence de singularités dans les équations d'Euler ou de Navier-Stokes, et on cherche des traces de ces singularités dans des champs de vitesse 3D mesurés dans un écoulement turbulent tourbillonnaire modèle, l'écoulement de von Kármán. La répartition de ces possibles empreintes de singularités, la structure de l'écoulement en leur voisinage ainsi que leur évolution temporelle sont étudiées. Nous nous appuyons sur le travail des mathématiciens Duchon et Robert pour chercher des traces de singularités et cherchons des valeurs extrêmes du terme de Duchon-Robert calculé à toute petite échelle, c’est-à-dire dans la zone dissipative : c’est ce que l’on appelle « traces de singularités ». Nous calculons le terme de Duchon-Robert à partir de champs de vitesse obtenus expérimentalement au centre d’un écoulement de von Kármán turbulent. Les champs de vitesse sont mesurés par vélocimétrie par image de particules tomographique (TPIV), résolue en temps ou non. Dans un premier temps, nous analysons les statistiques du terme de Duchon-Robert échelle par échelle et les comparons à celles de la dissipation visqueuse et à celles du terme de transfert inter-échelles apparaissant dans les équations LES. Dans un deuxième temps, nous analysons la topologie du champ de vitesse autour des événements extrêmes du terme de Duchon-Robert d'abord à partir des invariants du gradient de la vitesse puis par observation directe des champs de vitesse. Dans un troisième temps, nous présentons les résultats préliminaires d’une étude eulérienne de l’évolution temporelle des événements extrêmes du terme de Duchon-Robert. / This thesis is devoted to the experimental search for prints of the singularities that might occur in the solutions of the 3D incompressible Euler or Navier-Stokes equations. Indeed, the existence of solutions to these partial differential equations has been proven but it is still unknown whether these solutions are regular, i.e. whether they blow up in finite time or not. In this thesis, we postulate the existence of such singularities and look for prints of them in 3D velocity fields acquired experimentally in a turbulent swirling flow. The distribution, 3D structure and time evolution of these prints are detailed. Our detection of prints of possible singularities is based on the work of the mathematicists Duchon and Robert. We look for extreme values of the Duchon-Robert term at small scales, i.e. in the dissipative range. That is what we call prints of singularities. We compute the Duchon-Robert term on velocity fields which are acquired experimentally at the center of a von Kármán turbulent swirling flow. The velocity field is measured by tomographic particle image velocimetry (TPIV), either time-resolved or not. In a first part we perform a scale-by-scale analysis of the statistics of the Duchon-Robert term and compare them to the statistics of the viscous dissipation and of the inter-scale energy transfer terms involved in the LES equations. In a second part, we analyze the topology of the velocity field around the extreme events of the Duchon-Robert term. We first use a method based on the invariants of the velocity gradient tensor (VGT) and then observe directly the velocity fields. A third part presents preliminary results of an Eulerian study of the time-evolution of the extreme events of the Duchon-Robert term.
177

Surjectivity of a Gluing for Stable T2-cones in Special Lagrangian Geometry / スペシャルラグランジュ幾何における安定T2錐に対する張り合わせの全射性

Imagi, Yohsuke 23 May 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18444号 / 理博第4004号 / 新制||理||1577(附属図書館) / 31322 / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 加藤 毅, 教授 堤 誉志雄, 教授 小野 薫 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
178

On smoothness of minimal models of quotient singularities by finite subgroups of SLn(C) / SLn(C)の有限部分群による商特異点の極小モデルの非特異性について

Yamagishi, Ryo 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20884号 / 理博第4336号 / 新制||理||1623(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 並河 良典, 教授 雪江 明彦, 教授 森脇 淳 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
179

Topological Abel-Jacobi Map for Hypersurfaces in Complex Projective Four-Space

Zhang, Yilong 11 August 2022 (has links)
No description available.
180

Singularity Formation in the Deterministic and Stochastic Fractional Burgers Equations

Ramírez, Elkin Wbeimar January 2020 (has links)
Motivated by the results concerning the regularity of solutions to the fractional Navier-Stokes system and questions about the influence of noise on the formation of singularities in hydrodynamic models, we have explored these two problems in the context of the fractional 1D Burgers equation. First, we performed highly accurate numerical computations to characterize the dependence of the blow-up time on the the fractional dissipation exponent in the supercritical regime. The problem was solved numerically using a pseudospectral method where integration in time was performed using a hybrid method combining the Crank-Nicolson and a three-step Runge-Kutta techniques. A highlight of this approach is automated resolution refinement. The blow-up time was estimated based on the time evolution of the enstrophy (H1 seminorm) and the width of the analyticity strip. The consistency of the obtained blow-up times was verified in the limiting cases. In the second part of the thesis we considered the fractional Burgers equation in the presence of suitably colored additive noise. This problem was solved using a stochastic Runge-Kutta method where the stochastic effects were approximated using a Monte-Carlo method. Statistic analysis of ensembles of stochastic solutions obtained for different noise magnitudes indicates that as the noise amplitude increases the distribution of blow-up times becomes non-Gaussian. In particular, while for increasing noise levels the mean blow-up time is reduced as compared to the deterministic case, solutions with increased existence time also become more likely. / Thesis / Master of Science (MSc)

Page generated in 0.0333 seconds