• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 68
  • 27
  • 11
  • 10
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 289
  • 101
  • 76
  • 47
  • 41
  • 30
  • 26
  • 25
  • 24
  • 23
  • 22
  • 20
  • 19
  • 19
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Boundary Properties for Almost-Minimizers of the Relative Perimeter

Vianello, Giacomo 08 July 2024 (has links)
Let A be an Euclidean open Lipschitz set. This dissertation aims to discuss some results concerning the boundary regularity for almost-minimizers of the relative perimeter in A. An almost-minimizer of the relative perimeter in A is a measurable set E that minimizes the perimeter functional P(E;A), roughly speaking the (n-1)-area of the boundary of E in A, among local competitors for E. Important examples of almost-minimizers in A are given, for instance, by the solutions to relative isoperimetric problems like min { P(E;A) : E is contained in A and |E| = m}. While when A is smooth the theory of the boundary regularity for almost-minimizers is well-established, little is known when the boundary of A contains singular points such as edges, vertices, cusps, etc. In particular, we prove a boundary Monotonicity Formula, holding under a so-called visibility condition on A at a point x on the boundary of A, and a Vertex-skipping Theorem, valid when n = 3 and A is convex. This latter result establishes that the closure of the boundary of an almost-minimizer of the relative perimeter in a 3-dimensional open, convex set A cannot contain vertex-type singularities of the boundary of A. The optimality of the dimensional restriction n = 3 is also examined in the thesis.
182

Aspects of low Reynolds number microswimming using singularity methods

Curtis, Mark Peter January 2013 (has links)
Three different models, relating to the study of microswimmers immersed in a low Reynolds number fluid, are presented. The underlying, mathematical concepts employed in each are developed using singularity methods of Stokes flow. The first topic concerns the motility of an artificial, three-sphere microswimmer with prescribed, non-reciprocal, internal forces. The swimmer progresses through a low Reynolds number, nonlinear, viscoelastic medium. The model developed illustrates that the presence of the viscoelastic rheology, when compared to a Newtonian environment, increases both the net displacement and swimming efficiency of the microswimmer. The second area concerns biological microswimming, modelling a sperm cell with a hyperactive waveform (vigorous, asymmetric beating), bound to the epithelial walls of the female, reproductive tract. Using resistive-force theory, the model concludes that, for certain regions in parameter space, hyperactivated sperm cells can induce mechanical forces that pull the cell away from the wall binding. This appears to occur via the regulation of the beat amplitude, wavenumber and beat asymmetry. The next topic presents a novel generalisation of slender-body theory that is capable of calculating the approximate flow field around a long, thin, slender body with circular cross sections that vary arbitrarily in radius along a curvilinear centre-line. New, permissible, slender-body shapes include a tapered flagellum and those with ribbed, wave-like structures. Finally, the detailed analytics of the generalised, slender-body theory are exploited to develop a numerical implementation capable of simulating a wider range of slender-body geometries compared to previous studies in the field.
183

Calcul multi-échelle de singularités et applications en mécanique de la rupture

Dang, Thi Bach Tuyet 29 April 2013 (has links) (PDF)
Un enjeu majeur de mécanique de la rupture est de modéliser l'initiation d'une fissure dans une structure saine. Il y a deux difficultés: la première est de proposer une loi capable de prédire la nucléation, la seconde est d'ordre purement numérique. En ce qui concerne ce deuxième point, il est en effet difficile de calculer avec une bonne précision toute quantité comme le taux de restitution d'énergie associée à une fissure de faible longueur qui apparaît en fond d'entaille. La méthode des éléments finis classique conduit à des résultats inexacts en raison de la superposition de deux singularités (l'une due à l'entaille, l'autre à la pointe de la fissure) qui ne peuvent être correctement capturées par cette méthode. Une méthode spécifique d'approximation basée sur des développements asymptotiques est préférable comment il a déjà été constaté dans des situations analogues présentant des défauts localisés. Le premier chapitre de la thèse est consacré à la présentation de cette méthode asymptotique dite Méthode des Développements Asymptotiques Raccordés (MAM) dans le cas d'un défaut (ce qui inclut le cas d'une fissure) situé à l'extrémité d'une entaille. Cette première étude est faite dans le cadre simplifié de l'élasticité linéaire antiplane avant d'être étendue à l'élasticité plane dans le troisième chapitre. Un objectif majeur est d'utiliser cette méthode asymptotique pour prédire la nucléation ou la propagation d'une fissure à proximité d'un point singulier. Le deuxième chapitre de la thèse sera consacré à cette tâche. Cela nécessite, bien sûr, de lever la première difficulté en proposant un critère de nucléation physiquement raisonnable. Cette délicate question n'a pas reçu de réponse définitive à l'heure actuelle et a été considérée pendant longtemps comme un problème qui ne pouvait être résolu dans le cadre de la théorie de Griffith. La principale raison invoquée est que le taux de restitution de l'énergie dû à une petite fissure tend vers zéro lorsque la longueur de la fissure tend vers zéro. Par conséquent, si l'on suit le critère de Griffith qui stipule que la fissure peut se propager que lorsque le taux de libération d'énergie atteint une valeur caractéristique du matériau, il n'y a pas de nucléation possible. Ce "défaut" de la théorie de Griffith fut l'une des motivations qui conduit Francfort et Marigo à remplacer le critère de Griffith par un principe de minimisation de l'énergie. Il s'avère que ce principe de minimum global de l'énergie est vraiment en mesure de prédire la nucléation des fissures dans un corps sain. Cependant, la nucléation est nécessairement brutale dans le sens où une fissure de longueur finie apparaît brutalement à une charge critique et de plus il faut que le système franchisse une barrière d'énergie qui peut être d'autant plus haute que le minimum est "loin". Une autre façon de rendre compte de la nucléation de fissures est de quitter le cadre de la théorie de Griffith en introduisant le concept de forces cohésives. L'intérêt d'une telle approche est qu'elle contient automatiquement la notion de contrainte critique qui permet de régir naturellement la nucléation sans passer par le principe de minimisation globale de l'énergie. En résumé, nous proposons de traiter le problème de la nucléation d'une fissure à la pointe d'une entaille de trois façons et de comparer les trois critères correspondants. L'un de nos objectifs est aussi d'utiliser la MAM pour obtenir des expressions semi-analytiques pour la charge critique à partir de laquelle une fissure apparaît ainsi que la longueur de la fissure une fois nucléée. De façon précise, la thèse est organisée comme suit. Le chapitre 1 est consacré à la description de la MAM sur un problème générique d'élasticité linéaire antiplane où la structure contient un défaut situé au voisinage de la pointe d'une entaille. Nous avons d'abord décomposé la solution en deux développements: l'un, le développement extérieur, valable assez loin de la pointe de l'entaille, l'autre, le développement intérieur, valable au voisinage de la pointe de l'entaille. Ces développements contiennent une séquence de termes "intérieurs" et "exterieurs" qui sont solutions de problèmes "intérieurs" et "extérieurs" reliés les uns aux autres par des conditions de raccord. En outre, chaque terme contient une partie régulière et une partie singulière. Nous expliquons ensuite comment tous les termes et les coefficients qui entrent dans les parties singulières et régulières sont déterminés séquentiellement. Le chapitre se termine par un exemple où la solution exacte est connue et peut donc être développée directement avant d'être comparée à celle fournie par la MAM. Dans le chapitre 2, laMAMest appliquée au cas où le défaut est une fissure. Le premier objectif est de calculer avec une bonne précision le taux de restitution d'énergie associée à une fissure non cohésive de faible longueur située près de la pointe de l'entaille. En effet, il s'agit d'un véritable problème dans le cas où l'entaille n'est elle-même pas une fissure parce que le taux de restitution d'énergie est voisin de 0 lorsque la longueur de la fissure nucléée est voisine de 0, puis augmente rapidement avec la longueur de la fissure avant d'atteindre un maximum pour finalement redécroître. On explique d'abord comment le taux de restitution d'énergie est calculé par la Méthode des Elémenst Finis et pourquoi les résultats numériques sont moins précis lorsque la longueur de la fissure est faible. Ensuite, on utilise la MAM pour calculer le taux de restitution d'énergie pour les petites valeurs de la longueur de la fissure et on montre, comme il était prévu, que plus la taille de la fissure est petite, plus le résultat fourni par la MAM à un ordre donné est précis. Il s'avère même que l'on peut obtenir des résultats très précis en calculant seulement un petit nombre de termes. Nous discutons aussi de l'influence de l'angle de l'entaille sur l'exactitude des résultats. Cet angle joue un rôle important dans le processus de nucléation (parce que, en particulier, la longueur à partir de laquelle le maximum du taux de restitution d'énergie est atteinte dépend de l'angle de l'entaille). Lorsque l'angle de l'entaille est suffisamment grand, il suffit de calculer les deux premiers termes non triviaux du développement du taux de restitution d'énergie pour obtenir avec une très bonne précision la dépendance du taux de restitution d'énergie avec la longueur de fissure. Nous considérons ensuite le cas des fissures cohésives en introduisant le modèle de forces cohésives de Dugdale. En combinant la MAM avec la méthode G , nous obtenons un système de deux équations non linéaires couplées régissant l'évolution des longueurs de la zone non-cohésive et la zone cohésive en fonction du chargement. Il s'avère que le problème intérieur fourni par la MAM est un problème de Hilbert qui peut être résolu par la méthode des potentiels complexes. Ce faisant, la résolution se ramène à de simples quadratures qui sont calculées numériquement. On obtient ainsi, de façon quasiment analytique, la charge critique à partir de laquelle la petite fissure se propage de façon instable pour donner lieu à une fissure "macroscopique". En particulier, l'ordre de grandeur de cette charge critique est directement relié à l'exposant de la singularité de la solution avant fissuration qui est lui-même fonction de l'angle de l'entaille. Le chapitre 3 propose une généralisation de toutes les méthodes et résultats précédents au cas de l'élasticité plane. De façon précise, le but est toujours d'étudier la nucléation de fissures cohésives ou non cohésives à l'angle d'une entaille dans un milieu linéairement élastique et isotrope, mais maintenant en considérant des déplacements plans. De plus, il s'agit de traiter les conditions de nucléation aussi bien sous mode I pur que sous mode mixte. Dans la première partie du chapitre, nous utilisons le principe de minimisation globale pour traiter le cas des fissures non cohésives, alors que dans la deuxième partie nous utilisons le modèle de Dugdale pour traiter le cas des fissures cohésives. Dans les deux cas, la MAM est mise en oeuvre pour pallier le manque de précision de la méthode des éléments finis. Tous les résultats qui sont obtenus peuvent être considérés comme de simples généralisations de ceux développés dans le cas antiplan. En effet, d'un point de vue conceptuel et qualitatif, nous obtenons essentiellement le même type de propriétés. Toutefois, d'un point de vue technique, la MAM est plus délicate d'application en élasticité plane parce que l'obtention de la suite des fonctions singulières passe par la résolution d'équations transcendantes. Ce faisant, la mise en oeuvre numérique est sensiblement plus coûteuse. De plus, d'un point de vue analytique, les calculs et les démonstartions sont beaucoup plus lourds et une partie est donc passée en annexe.
184

Calcul multi-échelle de singularités et applications en mécanique de la rupture

Dang, Thi Bach Tuyet 29 April 2013 (has links) (PDF)
Un enjeu majeur de mécanique de la rupture est de modéliser l'initiation d'une fissure dans une structure saine. Il y a deux difficultés: la première est de proposer une loi capable de prédire la nucléation, la seconde est d'ordre purement numérique. En ce qui concerne ce deuxième point, il est en effet difficile de calculer avec une bonne précision toute quantité comme le taux de restitution d'énergie associée à une fissure de faible longueur qui apparaît en fond d'entaille. La méthode des éléments finis classique conduit à des résultats inexacts en raison de la superposition de deux singularités (l'une due à l'entaille, l'autre à la pointe de la fissure) qui ne peuvent être correctement capturées par cette méthode. Une méthode spécifique d'approximation basée sur des développements asymptotiques est préférable comment il a déjà été constaté dans des situations analogues présentant des défauts localisés. Le premier chapitre de la thèse est consacré à la présentation de cette méthode asymptotique dite Méthode des Développements Asymptotiques Raccordés (MAM) dans le cas d'un défaut (ce qui inclut le cas d'une fissure) situé à l'extrémité d'une entaille. Cette première étude est faite dans le cadre simplifié de l'élasticité linéaire antiplane avant d'être étendue à l'élasticité plane dans le troisième chapitre. Un objectif majeur est d'utiliser cette méthode asymptotique pour prédire la nucléation ou la propagation d'une fissure à proximité d'un point singulier. Le deuxième chapitre de la thèse sera consacré à cette tâche. Cela nécessite, bien sûr, de lever la première difficulté en proposant un critère de nucléation physiquement raisonnable. Cette délicate question n'a pas reçu de réponse définitive à l'heure actuelle et a été considérée pendant longtemps comme un problème qui ne pouvait être résolu dans le cadre de la théorie de Griffith. La principale raison invoquée est que le taux de restitution de l'énergie dû à une petite fissure tend vers zéro lorsque la longueur de la fissure tend vers zéro. Par conséquent, si l'on suit le critère de Griffith qui stipule que la fissure peut se propager que lorsque le taux de libération d'énergie atteint une valeur caractéristique du matériau, il n'y a pas de nucléation possible. Ce "défaut" de la théorie de Griffith fut l'une des motivations qui conduit Francfort et Marigo à remplacer le critère de Griffith par un principe de minimisation de l'énergie. Il s'avère que ce principe de minimum global de l'énergie est vraiment en mesure de prédire la nucléation des fissures dans un corps sain. Cependant, la nucléation est nécessairement brutale dans le sens où une fissure de longueur finie apparaît brutalement à une charge critique et de plus il faut que le système franchisse une barrière d'énergie qui peut être d'autant plus haute que le minimum est "loin". Une autre façon de rendre compte de la nucléation de fissures est de quitter le cadre de la théorie de Griffith en introduisant le concept de forces cohésives. L'intérêt d'une telle approche est qu'elle contient automatiquement la notion de contrainte critique qui permet de régir naturellement la nucléation sans passer par le principe de minimisation globale de l'énergie. En résumé, nous proposons de traiter le problème de la nucléation d'une fissure à la pointe d'une entaille de trois façons et de comparer les trois critères correspondants. L'un de nos objectifs est aussi d'utiliser la MAM pour obtenir des expressions semi-analytiques pour la charge critique à partir de laquelle une fissure apparaît ainsi que la longueur de la fissure une fois nucléée. De façon précise, la thèse est organisée comme suit. Le chapitre 1 est consacré à la description de la MAM sur un problème générique d'élasticité linéaire antiplane où la structure contient un défaut situé au voisinage de la pointe d'une entaille. Nous avons d'abord décomposé la solution en deux développements: l'un, le développement extérieur, valable assez loin de la pointe de l'entaille, l'autre, le développement intérieur, valable au voisinage de la pointe de l'entaille. Ces développements contiennent une séquence de termes "intérieurs" et "exterieurs" qui sont solutions de problèmes "intérieurs" et "extérieurs" reliés les uns aux autres par des conditions de raccord. En outre, chaque terme contient une partie régulière et une partie singulière. Nous expliquons ensuite comment tous les termes et les 4 coefficients qui entrent dans les parties singulières et régulières sont déterminés séquentiellement. Le chapitre se termine par un exemple où la solution exacte est connue et peut donc être développée directement avant d'être comparée à celle fournie par la MAM. Dans le chapitre 2, laMAMest appliquée au cas où le défaut est une fissure. Le premier objectif est de calculer avec une bonne précision le taux de restitution d'énergie associée à une fissure non cohésive de faible longueur située près de la pointe de l'entaille. En effet, il s'agit d'un véritable problème dans le cas où l'entaille n'est elle-même pas une fissure parce que le taux de restitution d'énergie est voisin de 0 lorsque la longueur de la fissure nucléée est voisine de 0, puis augmente rapidement avec la longueur de la fissure avant d'atteindre un maximum pour finalement redécroître. On explique d'abord comment le taux de restitution d'énergie est calculé par la Méthode des Elémenst Finis et pourquoi les résultats numériques sont moins précis lorsque la longueur de la fissure est faible. Ensuite, on utilise la MAM pour calculer le taux de restitution d'énergie pour les petites valeurs de la longueur de la fissure et on montre, comme il était prévu, que plus la taille de la fissure est petite, plus le résultat fourni par la MAM à un ordre donné est précis. Il s'avère même que l'on peut obtenir des résultats très précis en calculant seulement un petit nombre de termes. Nous discutons aussi de l'influence de l'angle de l'entaille sur l'exactitude des résultats. Cet angle joue un rôle important dans le processus de nucléation (parce que, en particulier, la longueur à partir de laquelle le maximum du taux de restitution d'énergie est atteinte dépend de l'angle de l'entaille). Lorsque l'angle de l'entaille est suffisamment grand, il suffit de calculer les deux premiers termes non triviaux du développement du taux de restitution d'énergie pour obtenir avec une très bonne précision la dépendance du taux de restitution d'énergie avec la longueur de fissure. Nous considérons ensuite le cas des fissures cohésives en introduisant le modèle de forces cohésives de Dugdale. En combinant la MAM avec la méthode G , nous obtenons un système de deux équations non linéaires couplées régissant l'évolution des longueurs de la zone non-cohésive et la zone cohésive en fonction du chargement. Il s'avère que le problème intérieur fourni par la MAM est un problème de Hilbert qui peut être résolu par la méthode des potentiels complexes. Ce faisant, la résolution se ramène à de simples quadratures qui sont calculées numériquement. On obtient ainsi, de façon quasiment analytique, la charge critique à partir de laquelle la petite fissure se propage de façon instable pour donner lieu à une fissure "macroscopique". En particulier, l'ordre de grandeur de cette charge critique est directement relié à l'exposant de la singularité de la solution avant fissuration qui est lui-même fonction de l'angle de l'entaille. Le chapitre 3 propose une généralisation de toutes les méthodes et résultats précédents au cas de l'élasticité plane. De façon précise, le but est toujours d'étudier la nucléation de fissures cohésives ou non cohésives à l'angle d'une entaille dans un milieu linéairement élastique et isotrope, mais maintenant en considérant des déplacements plans. De plus, il s'agit de traiter les conditions de nucléation aussi bien sous mode I pur que sous mode mixte. Dans la première partie du chapitre, nous utilisons le principe de minimisation globale pour traiter le cas des fissures non cohésives, alors que dans la deuxième partie nous utilisons le modèle de Dugdale pour traiter le cas des fissures cohésives. Dans les deux cas, la MAM est mise en oeuvre pour pallier le manque de précision de la méthode des éléments finis. Tous les résultats qui sont obtenus peuvent être considérés comme de simples généralisations de ceux développés dans le cas antiplan. En effet, d'un point de vue conceptuel et qualitatif, nous obtenons essentiellement le même type de propriétés. Toutefois, d'un point de vue technique, la MAM est plus délicate d'application en élasticité plane parce que l'obtention de la suite des fonctions singulières passe par la résolution d'équations transcendantes. Ce faisant, la mise en oeuvre numérique est sensiblement plus coûteuse. De plus, d'un point de vue analytique, les calculs et les démonstartions sont beaucoup plus lourds et une partie est donc passée en annexe.
185

Humanoid Arm Geometric Model

Mulumbwa, Sebe Stanley January 2016 (has links)
The world is slowly moving into increased human-robot interaction where both humans and robots can co-exist in the same domain. For the robot to be able to operate effectively in a man’s designed environment, it becomes necessary to model the robot with human capabilities as humans are seen as more capable. Replicating human becomes a huge challenge due to numerous degrees-of-freedom (DOFs) that human possess resulting into too many variables and nonlinear equations. Other challenges do occur like singularities.   In this thesis, the singularity challenge of a redundant humanoid arm is explored while maintaining a simple 7 DOF serial chain structure. As opposed to the 30 DOF human arm, a simpler 7 DOF humanoid arm is adopted and studied to eliminate the singularity challenges. The singularity problem mainly comes from the elbow and the spherical joints at the shoulder and wrist. A step-by-step review of available inverse kinematics techniques is made with more focus on the iterative Jacobian-based methods. A step-by-step approach is adopted so as to identify the source of singularities while using the iterative Jacobian-based techniques that are able to handle the nonlinearities of the equations.   The Singular Value Filtering (SVF) technique coupled with Selectively Damped Least Squares (SDLS) is employed. Without any restrictions to the stretch of the arm or end-effector pose, the method demonstrates, in conjunction with Euler angle singularity avoidance method, the elimination of singularity problems. This is achieved with no adjustment to kinematic model of the manipulator.
186

Etude de certains ensembles singuliers associés à une application polynomiale / Some singular sets associated to a polynomial maps

Nguyen thi bich, Thuy 30 September 2013 (has links)
Ce travail comporte deux parties dont la première concerne l'ensemble asymptotique $S_F$ d'une application polynomiale $F: C^n to C^n$. Dans les année 90s, Jelonek a montré que cet ensemble est une variété algébrique complexe singulière de dimension (complexe) $n-1$. Nous donnons une méthode, appelée {it méthode des fa{c c}ons}, pour stratifier cet ensemble. Nous obtenons une stratification de Thom-Mather. Par ailleurs, il existe une stratification de Whitney de $S_F$ telle que l'ensemble des fa{c c}ons possibles soit constant sur chaque strate. En utilisant les fa{c c}ons, nous donnons un algorithme pour expliciter l'ensemble asymptotique d'une application quadratique dominante en trois variables. Nous obtenons aussi une liste des ensembles asymptotiques possibles dans ce cas. La deuxième partie concerne l'ensemble $V_F$ : En 2010, Anna et Guillaume Valette ont construit une pseudo-variété réelle $V_F subset R^{2n + p}$, où $p > 0$, associée à une application polynomiale $F: C^n to C^n$. Dans le cas $n = 2$, ils ont prouvé que si $F$ est une application polynomiale de déterminant jacobien partout non nul, alors $F$ n'est pas propre si et seulement si l'homologie d'intersection de $V_F$ n'est pas triviale en dimension 2. Nous donnons une généralisation de ce résultat, dans le cas d'une application polynomiale $F : C^n to C^n$ de jacobien partout non nul. Nous donnons aussi une méthode pour stratifier l'ensemble $V_F$. Comme applications, nous obtenons des stratifications de l'ensemble des valeurs critiques asymptotiques de $F$ et de l'ensemble des points de bifurcation de $F$. / There are two parts in the present work. The first part concerns the asymptotic set of a polynomial mapping $F: C^n to C^n$. In the 90s, Zbigniew Jelonek showed that this set is a $(n-1)$ - (complex) dimensional singular variety. We give a method, called {it m'ethode des fa{c c}ons}, for stratifying this set. We obtain a Thom-Mather stratification. Moreover, there exists a Whitney stratification such that the set of possible fa{c c}ons is constant on every stratum. By using the fa{c c}ons, we give an algorithm for expliciting the asymptotic sets of a dominant quadratic polynomial mapping in three variables. As a result, we have a complete list of the asymptotic sets in this case. The second part concerns the set called Valette set $V_F$. In 2010, Anna and Guillaume Valette constructed a real pseudomanifold $V_F subset R^{2n + p}$, where $p > 0$, associated to a polynomial mapping $F: C^n to C^n$. In the case $n = 2$, they proved that if $F$ is a polynomial mapping with nowhere vanishing Jacobian, then $F$ is not proper if and only if the homology (or intersection homology) of $V_F$ is not trivial in dimension 2. We give a generalization of this result, in the case of a polynomial mapping $F : C^n to C^n$ with nowhere vanishing Jacobian. We give also a method for stratifying the set $V_F$. As applications, we have the stratifications of the set of asymptotic critical values of $F$ and the set of bifurcation points of $F$.
187

Torção Analítica e extensões para o Teorema de Cheeger Müller. / Analytic Torsion and extensions for the Cheeger Müller theorem

Hartmann Júnior, Luiz Roberto 10 December 2009 (has links)
Estudamos a Torção Analítica para variedades com bordo e ainda com singuaridades do tipo cônico, mais especificamente, para um cone métrico limitado, com o propósito de investigar a extensão natural do Teorema de Cheeger Müller para tais espaços. Começamos determinando a Torção Analítica do disco e de variedades com o bordo totalmente geodésico, por meio de ferramentas geométricas desenvolvidas por J. Brüning e X. Ma. Posteriormente, usando ferramentas analíticas desenvolvidas por M. Spreafico, determinamos a Torção Analítica do cone sobre uma esfera de dimensão ímpar e provamos um teorema do tipo Cheeger Müller para este espaço. Mais ainda, provamos que o resualto de J. Brüning e X. Ma estende para o cone sobre uma esfera de dimensão ímpar / We study for Analytic Torsion of manifolds with boundary and also with conical singularities , more specifically, for a finite metric cone, with the purpose of investing the natural extension of the Cheeger Müller theorem for such spaces. we start by computing the Analytic Torsion of an any dimensional disc and of a manifold with totally boundary, by using geometric tools development by J. Brüning and X. Ma. Then, by using analytic tools development by M. Spreafico, we determine the Analytic Torsion of a cone over an odd dimensional sphere and we prove a theorem of Cheeger Müller type space. Moreover, we prove that the result of J. Brüning and X. Ma extends to the cone over an odd dimensional sphere
188

Torção Analítica e extensões para o Teorema de Cheeger Müller. / Analytic Torsion and extensions for the Cheeger Müller theorem

Luiz Roberto Hartmann Júnior 10 December 2009 (has links)
Estudamos a Torção Analítica para variedades com bordo e ainda com singuaridades do tipo cônico, mais especificamente, para um cone métrico limitado, com o propósito de investigar a extensão natural do Teorema de Cheeger Müller para tais espaços. Começamos determinando a Torção Analítica do disco e de variedades com o bordo totalmente geodésico, por meio de ferramentas geométricas desenvolvidas por J. Brüning e X. Ma. Posteriormente, usando ferramentas analíticas desenvolvidas por M. Spreafico, determinamos a Torção Analítica do cone sobre uma esfera de dimensão ímpar e provamos um teorema do tipo Cheeger Müller para este espaço. Mais ainda, provamos que o resualto de J. Brüning e X. Ma estende para o cone sobre uma esfera de dimensão ímpar / We study for Analytic Torsion of manifolds with boundary and also with conical singularities , more specifically, for a finite metric cone, with the purpose of investing the natural extension of the Cheeger Müller theorem for such spaces. we start by computing the Analytic Torsion of an any dimensional disc and of a manifold with totally boundary, by using geometric tools development by J. Brüning and X. Ma. Then, by using analytic tools development by M. Spreafico, we determine the Analytic Torsion of a cone over an odd dimensional sphere and we prove a theorem of Cheeger Müller type space. Moreover, we prove that the result of J. Brüning and X. Ma extends to the cone over an odd dimensional sphere
189

Sobre a geometria diferencial do cross-cap no 3-espaço Euclidiano / On the differential geometry of the cross-cap in the Euclidean 3-space

Sichacá, Martín Barajas 24 February 2017 (has links)
Nesta tese estudamos a geometria diferencial do cross-cap usando ferramentas da teoria de singularidades. Estudamos curvas definidas sobre uma superfície regular que captam o contato da superfície com planos e esferas e estendemos o estudo para o cross-cap. Consideramos os fenômenos locais que ocorrem genericamente na família de projeções ortogonais do cross-cap e obtemos informações detalhadas sobre as bifurcações da projeção do conjuntos dos pontos duplos juntamente com a do contorno aparente. Estudamos as simetrias reflexõais infinitesimais do cross-cap através das singularidades da família da aplicações dobra e damos uma caracterização geométrica das mesmas. Finalmente, consideramos dualidade nas equações diferenciais binárias que definem as curvas assintóticas e as linhas de curvatura sobre o cross-cap. Estudamos o conjunto dos pontos onde ocorrem as inflexões de tais curvas e a relação deste conjunto com o conjunto sub-parabólico e flecnodal. / In this thesis we study the differential geometry of the cross-cap using singularity theory. We study curves on a regular surface that capture the contact of the surface with planes and spheres and extend our study to the cross-cap. We deal with local phenomena that occur generically in the family of orthogonal projection of the cross-cap and obtain detailed information about the bifurcations of the projection of double point curve together with the profile. We study the infinitesimal reflectional symmetry of a cross-cap via the singularities of the fold maps and give a geometrical characterization of these maps. Finally, we consider the duality in the binary differential equations of the asymptotic curves and of the curvature lines on a cross-cap. We study the inflection set of this curves and their relation with the subparabolic set and the flecnodal curve.
190

On singular solutions of the Gelfand problem.

January 1994 (has links)
by Chu Lap-foo. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 68-69). / Introduction --- p.iii / Chapter 1 --- Basic Properties of Singular Solutions --- p.1 / Chapter 1.1 --- An Asymptotic Radial Result --- p.2 / Chapter 1.2 --- Local Uniqueness of Radial Solutions --- p.8 / Chapter 2 --- Dirichlet Problem : Existence Theory I --- p.11 / Chapter 2.1 --- Formulation --- p.12 / Chapter 2.2 --- Explicit Solutions on Balls --- p.14 / Chapter 2.3 --- The Moser Inequality --- p.19 / Chapter 2.4 --- Existence of Solutions in General Domains --- p.24 / Chapter 2.5 --- Spectrum of the Problem --- p.26 / Chapter 3 --- Dirichlet Problem : Existence Theory II --- p.29 / Chapter 3.1 --- Mountain Pass Lemma --- p.29 / Chapter 3.2 --- Existence of Second Solution --- p.31 / Chapter 4 --- Dirichlet Problem : Non-Existence Theory --- p.36 / Chapter 4.1 --- Upper Bound of λ* in Star-Shaped Domains --- p.36 / Chapter 4.2 --- Numerical Values --- p.41 / Chapter 5 --- The Neumann Problem --- p.42 / Chapter 5.1 --- Existence Theory I --- p.43 / Chapter 5.2 --- Existence Theory II --- p.47 / Chapter 6 --- The Schwarz Symmetrization --- p.49 / Chapter 6.1 --- Definitions and Basic Properties --- p.49 / Chapter 6.2 --- Inequalities Related to Symmetrization --- p.58 / Chapter 6.3 --- An Application to P.D.E --- p.63 / Bibliography --- p.68

Page generated in 0.0233 seconds