21 |
5G@15 GHz Testbed Development and EvaluationHabib, Imran January 2018 (has links)
Due to the advancement in technology and the increase in the amount of data beingtransferred through wireless channels, many developments in the techniques and speedof data transfer have been observed in the past few decades. The current trend incellular technology is transforming from 4G to 5G. So, to meet future requirements,it is highly necessary to have further improvements in technology like modulationtechniques, Channel access methods, etc. Many top research institutes around the worldare investing heavily in research and development of 5G.Radio waves have been used for a very long time in mobile phone communication,but providers are experimenting with broadcasting on millimeter waves which usehigher frequencies ranging from 6GHz to 300GHz. Data characteristics like power,SNR, interference, etc. need to be evaluated for these high frequencies. As 5G is still ininitial phases of development, there are not many testing tools to check and evaluateits performance. A testbed is a testing tool which is used for conducting rigorous,transparent, and replicable testing, experimenting and evaluating the performance ofthese propagated data at these high frequencies.The thesis work evaluates the implementation structures of the 5G testbed @15GHzand its performance in indoor and outdoor scenarios. It also talks about the methods ofsignal generation through Matlab and it’s transmission at 15GHz using Xilinx FPGAand Analog devices’ FMCOMMS5 transceiver. This data is then transmitted andreceived by patch antennas provided by Ericsson AB. Various techniques were used inorder to improve the signal, like using RF hardware components and software modules.Different channel sounding techniques were used in order to achieve the synchronizationbetween the transmitter and the receiver node in order to measure the properties ofthe channel. All of the experiments were performed by implementing a single-inputsingle-output system (SISO) module of the 5G testbed. This SISO system can be easilytransformed into a multiple-input-multiple-output system (MIMO) by replicating theoriginal SISO system.The result shares some interesting findings on the readiness of the 5G testbed for aiiiivbetter understanding of the future technology. It is concluded that this testbed providessomewhat a reliable platform to test the performance of the 5G technology. / Tack vare teknikutveckling och ökning i mängden data som sänds trådlöst, hardatatakterna ökat enormt under de senaste decennierna. Den senaste trended inomtrådlös kommunikationärövergången från 4G till 5G. För att möte framtida krav,finns det därför behov av ytterligare teknologiutveckling, t ex i modulationstekniker och kanalaccessmetoder. Många forskningsinstitut runt om i världen investerar därför i forskning och utveckling av 5G.Radiovågor har använts under väldigt lång tid för mobil kommunikation, men tillverkare och operatörer experimenterar med sändningar i millimetervågsområdet, som använder högre frekvenser i området från 6GHz till 300GHz. Egenskaper såsom effektdämpning, SNR, interferens, osv, behöver utvärderas för dessa högre frekvenser. Eftersom utvecklingen av 5G fortfarande är i en tidig fas, finns inte så många testverktygtillgängliga för prestandautvärdering. En testbädd är ett testverktyg som användsför att utföra rigorös, transparent och upprepningsbar testning, experimentering och prestandautvärdering av data som har sänts vid dessa höga frekvenser.Denna rapport utvärderar implementationsstrukturer för en 5G-testbädd vid 15GHz,och dess prestanda i inomoch utomhusscenarier. Den beskriver även metoder försignalgenerering via Matlab och sändning vid 15GHz mha Xilinx FPGA och Analog devices’ FMCOMMS5 radiomoduler. Signalen sänds sedan via patch-antenner från Ericsson AB. Olika metoder användes för att förbättra signalen, både med radiofrekvens hårdvara och mjukvarumoduler. Olika kanalmätningsmetoder har använts för att nå synkronisering mellan sändaroch mottagarnoderna, för att mäta kanalegenskaper. Alla experimenten utfördes genom att implementera en SISO-modul (en sändarresp. mottagarantenn) av 5G-testbädden. Detta SISO-system kan enkelt utökas till ett MIMO system (flera sändaroch mottagarantenner) genom att replikera SISO-systemet.Resultaten visar att 5G-testbädden är redo att användas för att nå bättre förståelse av framtida teknologin. Slutsatsen är att testbädden erbjuder en tämligen påliglig plattformför att utvärdera prestanda för 5G-teknologi.
|
22 |
Traitement Aveugle de Signaux BiomédicauxKachenoura, Amar 06 July 2006 (has links) (PDF)
Ce mémoire aborde l'analyse et le traitement de données biomédicales. L'objectif est d'extraire des informations nécessaires au diagnostic de certaines pathologies. Plus précisément, ce rapport de thèse peut être scindé en deux parties. La première concerne l'élaboration d'un système ambulatoire multi-varié qui permette d'explorer les fonctions neurologiques nécessaires au diagnostic de différents troubles du sommeil. Des méthodes de séparation aveugle de sources, développées pour des mélanges instantanés, ont été étudiées et appliquées pour répondre à ce problème. La seconde partie porte sur l'étude du système nerveux autonome. Le but est de caractériser le profile sympathique et parasympathique des patients. Face aux différents problèmes mathématiques rencontrés, nous avons élaboré de nouvelles méthodes d'estimation de phase. Ces dernières ont fait l'objet d'une étude comparative au travers de simulations numériques.
|
23 |
Lubrication mechanism of hydrocarbon-mimicking ionic liquidsNyberg, Erik January 2017 (has links)
Lubrication is critical in order to achieve high efficiency and reliability of machine elements such as gears, bearings, and other moving mechanical assemblies (MMA). In space applications, tribological properties of lubricants are quickly growing more important. Traditional space systems such as satellites imply MMA such as gyroscopes, antenna pointing mechanisms, and solar array drives. These MMA operate in high vacuum (<10-5 Pa) under lightly loaded conditions. Modern space missions on the other hand, such as remotely operated vehicles used for in-situ Mars exploration relies on different types of MMA. In these robotic systems, electromechanical actuators are being used extensively to provide controlled motion. Gears and bearings in these actuators operate in an atmosphere mainly consisting of CO2 at ~10+3 Pa under heavily loaded contact conditions. In these conditions, the tribosystem is likely to operate in the boundary lubricated regime, with consequent risk of high friction and wear. High molecular weight fluids have significant heritage in space because of their low vapor pressure. They are currently employed as lubricants in a wide range of space applications, as they meet high demands on resistance to vacuum outgassing. Unfortunately, the large molecules are susceptible to degradation under heavy load. Ionic liquids (ILs) on the other hand, are synthetic fluids that consist entirely of ion pairs with opposing charge. The resulting ion bonds enable inherently low vapor pressure of the fluid without the need for a high molecular weight. For this reason ILs have been advocated as potential lubricants for space applications, but so far compatibility issues have hampered their use as lubricants. Countless IL variations are possible, and solutions are thus likely to exist. Constituent ions can be designed individually and combined in various configurations. However, the fundamental understanding of the lubricating mechanism of ionic liquids is still incomplete, and consequently the optimum molecular structure for IL lubricants remain unknown. In this thesis, a stepwise approach to molecular design of IL lubricants is described, and the resulting hydrocarbon-mimicking ionic liquids are evaluated in tribological experiments. In this thesis, the experiments focus on tribological performance, using steel-steel tribopairs in air environment under boundary lubrication (Paper I). Boundary film formation under a range of contact pressures and temperatures, is analyzed after tribotesting by optical profilometry, scanning electron microscopy (SEM), and energy dispersive X- iii ray spectroscopy (EDS) in Paper II. The analysis reveal formation of a highly effective boundary film based on silicate, that can be further enhanced by amine additives. This thesis demonstrates the feasibility of improving tribological performance of ionic liquids by molecular design. / Projekt: Rymdforskarskolan 2015
|
24 |
Modelování LTI SISO systémů zlomkového řádu s využitím zobecněných Laguerrových funkcí / Fractional order LTI SISO systems modelling using generalized Laguerre functionsKárský, Vilém January 2017 (has links)
This paper concentrates on the description of fractional order LTI SISO systems using generalized Laguerre functions. There are properties of generalized Laguerre functions described in the paper, and an orthogonal base of these functions is shown. Next the concept of fractional derivatives is explained. The last part of this paper deals with the representation of fractional order LTI SISO systems using generalized Laguerre functions. Several examples were solved to demonstrate the benefits of using these functions for the representation of LTI SISO systems.
|
25 |
Energy-Efficient Turbo Decoder for 3G Wireless TerminalsAl-Mohandes, Ibrahim January 2005 (has links)
Since its introduction in 1993, the turbo coding error-correction technique has generated a tremendous interest due to its near Shannon-limit performance. Two key innovations of turbo codes are parallel concatenated encoding and iterative decoding. In its IMT-2000 initiative, the International Telecommunication Union (ITU) adopted turbo coding as a channel coding standard for Third-Generation (3G) wireless high-speed (up to 2 Mbps) data services (cdma2000 in North America and W-CDMA in Japan and Europe).
For battery-powered hand-held wireless terminals, energy consumption is a major concern. In this thesis, a new design for an energy-efficient turbo decoder that is suitable for 3G wireless high-speed data terminals is proposed. The Log-MAP decoding algorithm is selected for implementation of the constituent Soft-Input/Soft-Output (SISO) decoder; the algorithm is approximated by a fixed-point representation that achieves the best performance/complexity tradeoff. To attain energy reduction, a two-stage design approach is adopted.
First, a novel dynamic-iterative technique that is appropriate for both good and poor channel conditions is proposed, and then applied to reduce energy consumption of the turbo decoder. Second, a combination of architectural-level techniques is applied to obtain further energy reduction; these techniques also enhance throughput of the turbo decoder and are area-efficient. The turbo decoder design is coded in the VHDL hardware description language, and then synthesized and mapped to a 0. 18<i>μ</i>m CMOS technology using the standard-cell approach. The designed turbo decoder has a maximum data rate of 5 Mb/s (at an upper limit of five iterations) and is 3G-compatible. Results show that the adopted two-stage design approach reduces energy consumption of the turbo decoder by about 65%.
A prototype for the new turbo codec (encoder/decoder) system is implemented on a Xilinx XC2V6000 FPGA chip; then the FPGA is tested using the CMC Rapid Prototyping Platform (RPP). The test proves correct functionality of the turbo codec implementation, and hence feasibility of the proposed turbo decoder design.
|
26 |
Energy-Efficient Turbo Decoder for 3G Wireless TerminalsAl-Mohandes, Ibrahim January 2005 (has links)
Since its introduction in 1993, the turbo coding error-correction technique has generated a tremendous interest due to its near Shannon-limit performance. Two key innovations of turbo codes are parallel concatenated encoding and iterative decoding. In its IMT-2000 initiative, the International Telecommunication Union (ITU) adopted turbo coding as a channel coding standard for Third-Generation (3G) wireless high-speed (up to 2 Mbps) data services (cdma2000 in North America and W-CDMA in Japan and Europe).
For battery-powered hand-held wireless terminals, energy consumption is a major concern. In this thesis, a new design for an energy-efficient turbo decoder that is suitable for 3G wireless high-speed data terminals is proposed. The Log-MAP decoding algorithm is selected for implementation of the constituent Soft-Input/Soft-Output (SISO) decoder; the algorithm is approximated by a fixed-point representation that achieves the best performance/complexity tradeoff. To attain energy reduction, a two-stage design approach is adopted.
First, a novel dynamic-iterative technique that is appropriate for both good and poor channel conditions is proposed, and then applied to reduce energy consumption of the turbo decoder. Second, a combination of architectural-level techniques is applied to obtain further energy reduction; these techniques also enhance throughput of the turbo decoder and are area-efficient. The turbo decoder design is coded in the VHDL hardware description language, and then synthesized and mapped to a 0. 18<i>μ</i>m CMOS technology using the standard-cell approach. The designed turbo decoder has a maximum data rate of 5 Mb/s (at an upper limit of five iterations) and is 3G-compatible. Results show that the adopted two-stage design approach reduces energy consumption of the turbo decoder by about 65%.
A prototype for the new turbo codec (encoder/decoder) system is implemented on a Xilinx XC2V6000 FPGA chip; then the FPGA is tested using the CMC Rapid Prototyping Platform (RPP). The test proves correct functionality of the turbo codec implementation, and hence feasibility of the proposed turbo decoder design.
|
27 |
Joint Estimation of Impairments in MIMO-OFDM SystemsJose, Renu January 2014 (has links) (PDF)
The integration of Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM) techniques has become a preferred solution for the high rate wireless technologies due to its high spectral efficiency, robustness to frequency selective fading, increased diversity gain, and enhanced system capacity. The main drawback of OFDM-based systems is their susceptibility to impairments such as Carrier Frequency Offset (CFO), Sampling Frequency Offset (SFO), Symbol Timing Error (STE), Phase Noise (PHN), and fading channel. These impairments, if not properly estimated and compensated, degrade the performance of the OFDM-based systems
In this thesis, a system model for MIMO-OFDM that takes into account the effects of all these impairments is formulated. Using this system model, we de-rive Cramer-Rao Lower Bounds (CRLBs) for the joint estimation of deterministic impairments in MIMO-OFDM system, which show the coupling effect among different impairments and the significance of the joint estimation. Also, Bayesian CRLBs for the joint estimation of random impairments in OFDM system are derived. Similarly, we derive Hybrid CRLBs for the joint estimation of random and deterministic impairments in OFDM system, which show the significance of using Bayesian approach in estimation.
Further, we investigate different algorithms for the joint estimation of all impairments in OFDM-based system. Maximum Likelihood (ML) algorithms and its low complexity variants, for the joint estimation of CFO, SFO, STE, and channel in MIMO-OFDM system, are proposed. We propose a low complexity ML algorithm which uses Compressed Sensing (CS) based channel estimation method in a sparse fading sce-nario, where the received samples used for estimation are less than that required for a Least Squares (LS) or Maximum a posteriori (MAP) based estimation. Also, we propose MAP algorithms for the joint estimation of the random impairments, PHN and channel, utilizing their statistical knowledge which is known a priori. Joint estimation algorithms for SFO and channel in OFDM system, using Bayesian framework, are also proposed in this thesis. The performance of the estimation methods is studied through simulations and numerical results show that the performance of the proposed algorithms is better than existing algorithms and is closer to the derived CRLBs.
|
28 |
Estimátor v systému regulace s proměnlivou strukturou / Estimator in control systems with variable structureDvořáček, Martin January 2008 (has links)
The thesis write about the linear discrete time incremental estimators. These are used for the choice of the best control system in systems with variable structure and further for direct control with status controller. There is an application of this on physical plane. In this paper PID variation controllers are discussed and optimized using Nelder-Mead Simplex Method. Feedback control with optimal PID is compared with control using linear discrete incremental estimators and status regulator.
|
29 |
Adaptive Control Of A General Class Of Finite Dimensional Stable LTI SystemsShankar, H N 03 1900 (has links)
We consider the problem of Adaptive Control of finite-dimensional, stable, Linear Time Invariant (LTI) plants. Amongst such plants, the subclass regarding which an upper bound on the order is not known or which are known to be nonminimum phase (zeros in the unstable region) pose formidable problems in their own right. On one hand, if an upper bound on the order of the plant is not known, adaptive control usually involves some form of order estimation. On the other hand, when the plant is allowed to be either minimum phase or nonminimum phase, the adaptive control problem, as is well-known, becomes considerably-less tractable.
In this study, the class of unknown plants considered is such that no information is available on the upper bound of the plant order and, further, the plant may be either minimum phase or nonminimum phase. Albeit known to be stable, such plants throw myriads of challenges in the context of adaptive control.
Adaptive control involving such plants has been addressed [79] in a Model Reference Adaptive Control (MRAC) framework. There, the inputs and outputs of the unknown plant are the only quantities available by measurement in terms of which any form of modeling of the unknown plant may be made. Inputs to the reference model have been taken from certain restricted classes of bounded signals. In particular, the three classes of inputs considered are piecewise continuous bounded functions which asymptotically approach
• a nonzero constant,
• a sinusoid, and
• a sinusoid with a nonzero shift.
Moreover, the control law is such that adaptation is carried out at specific instants separated by progressively larger intervals of time. The schemes there have been proved to be e-optimal in the sense of a suitably formulated optimality criterion.
If, however, the reference model inputs be extended to the class of piecewise continuous bounded functions, that would compound the complexity of the adaptive control problem. Only one attempt [78] in adaptive control in such a setting has come to our notice. The problem there has been tackled by an application of the theory of Pade Approximations to time moments of an LTI system. Based on a time moments estimation procedure, a simple adaptive scheme for Single-Input Single-Output (SISO) systems with only a cascade compensator has been reported.
The first chapter is essentially meant to ensure that the problem we seek to address in the field of adaptive control indeed has scope for research. Having defined Adaptive Control, we selectively scan through the literature on LTI systems, with focus on MRAC. We look out in particular for studies involving plants of which not much is known regarding their order and systems which are possibly nonminimum phase. We found no evidence to assert that the problem of adaptive control of stable LTI systems, not necessarily minimum phase and of unknown upper bound on the order, was explored enough, save two attempts involving
SISO systems. Taking absence of evidence (of in-depth study) for evidence of absence, we make a case for the problem and formally state it. We preview the thesis.
We set two targets before us in Chapter 2. The first is to review one of the existing procedures attacking the problem we intend to address. Since the approach is based on the notion of time moments of an LTI system, and as we are to employ Pade Approximations as a tool, we uncover these concepts to the limited extent of our requirement. The adaptive procedure, Plant Command Modifier Scheme (PCMS) [78], for SISO plants is reported in some detail. It stands supported on an algorithm specially designed to estimate the time moments of an LTI system given no more than its input and output. Model following there has been sought to be achieved by matching the first few time moments of the reference model by the corresponding ones of the overall compensated plant. The plant time moment estimates have been taken to represent the unknown plant. The second of the goals is to analyze PCMS critically so that it may serve as a forerunner to our work. We conclude the chapter after accomplishing these goals.
In Chapter 3, we devise a time moment estimator for SISO systems from a perspective which is conceptually equivalent to, yet functionally different from, that appropriated in [78]. It is a recipe to obtain estimates of time moments of a system by computing time moment estimates of system input and output signals measured up to current time. Pade approximations come by handy for this purpose. The lacunae exposed by a critical examination of PCMS in Chapter 2 guide us to progressively refine the estimator. Infirmities in the control part of PCMS too have come to light on our probing into it. A few of these will be fixed by way of fabricating two exclusively cascade compensators. We encounter some more issues, traceable to the estimator, which need redressal. Instead of directly fine-tuning the estimator itself, as is the norm, we propose the idea of 'estimating' the lopsidedness of the estimator by using it on the fully known reference model. This will enable us to effect corrections and obtain admissible estimates. Next, we explore the possibility of incorporating feedback compensation in addition to the existing cascade compensation. With output error minimization in mind, we come up with three schemes in this category. In the process, we anticipate the risk of instability due to feedback and handle it by means of an instability preventer with an inbuilt instability detector. Extensive simulations with minimum and rionminimum phase unknown plants employing the various schemes proposed are presented. A systematic study of simulation results reveals a dyad of hierarchies of progressively enhanced overall performance. One is in the sequence of the proposed schemes and the other in going for matching more and more moments. Based on our experiments we pick one of the feedback schemes as the best.
Chapter 4 is conceived of as a bridge between SISO and multivariable systems. A transition from SISO to Multi-Input Multi-Output (MIMO) adaptive control is not a proposition confined to the mathematics of dimension-enhancement. A descent from the MIMO to the SISO case is expected to be relatively simple, though. So to transit as smoothly and gracefully as possible, some issues have to be placed in perspective before exploring multivariable systems. We succinctly debate on the efforts in pursuit of the exact vis-a-vis the accurate, and their implications. We then set some notations and formulate certain results which serve to unify and simplify the development in the subsequent three chapters. We list a few standard results from matrix theory which are to be of frequent use in handling multivariable systems.
We derive control laws for Single-Input Multi-Output (SIMO) systems in Chapter 5. Expectedly, SIMO systems display traits of observability and uncontrollability. Results of
illustrative simulations are furnished.
In Chapter 6, we formulate control laws for Multi-Input Single-Output (MISO) systems. Characteristics of unobservability and controllability stand out there. We present case studies. Before actually setting foot onto MIMO systems, we venture to conjecture on what to expect there.
We work out all the cascade and feedback adaptive schemes for square and nonsquare MIMO systems in Chapter 7. We show that MIMO laws when projected to MISO, SIMO and SISO cases agree with the corresponding laws in the respective cases. Thus the generality of our treatment of MIMO systems over other multivariable and scalar systems is established. We report simulations of instances depicting satisfactory performance and highlight the limitations of the schemes in tackling the family of plants of unknown upper bound on the order and possibly nonminimum phase. This forms the culmination of our exercise which took off from the reported work involving SISO systems [78].
Up to the end of the 7th chapter, we are in pursuit of solutions for the problem as general as in §1.4. For SISO systems, with input restrictions, the problem has been addressed in [79]. The laws proposed there carry out adaptation only at certain discrete instants; with respect to a suitably chosen cost, the final laws are proved to be e>optimal. In Chapter 8, aided by initial suboptimal control laws, we finally devise two algorithms with continuous-time adaptation and prove their optimality. Simulations with minimum and nonminimum phase plants reveal the effectiveness of the various laws, besides throwing light on the bootstrapping and auto-rectifying features of the algorithms.
In the tail-piece, we summarize the work and wind up matters reserved for later deliberation. As we critically review the present work, we decant the take-home message. A short note on applications followed by some loud thinking as a spin-off of this report will take us to finis.
|
30 |
Channel Probing for an Indoor Wireless Communications ChannelHunter, Brandon 13 March 2003 (has links) (PDF)
The statistics of the amplitude, time and angle of arrival of multipaths in an indoor environment are all necessary components of multipath models used to simulate the performance of spatial diversity in receive antenna configurations. The model presented by Saleh and Valenzuela, was added to by Spencer et. al., and included all three of these parameters for a 7 GHz channel. A system was built to measure these multipath parameters at 2.4 GHz for multiple locations in an indoor environment. Another system was built to measure the angle of transmission for a 6 GHz channel. The addition of this parameter allows spatial diversity at the transmitter along with the receiver to be simulated. The process of going from raw measurement data to discrete arrivals and then to clustered arrivals is analyzed. Many possible errors associated with discrete arrival processing are discussed along with possible solutions. Four clustering methods are compared and their relative strengths and weaknesses are pointed out. The effects that errors in the clustering process have on parameter estimation and model performance are also simulated.
|
Page generated in 0.0306 seconds