1 |
Development of a cellular mechanistic assay for the SET and MYND domain containing methyltransferase SMYD2, identification and validation of a novel substrate, and functional characterization of its inhibitionEggert, Erik 15 August 2017 (has links)
Protein Methyltransferasen sind oftmals fehlreguliert in Tumorzellen und stellen potenzielle Ziele in der Krebstherapie dar. Das SET und MYND Domain enthaltene Protein 2 (SMYD2) wurde als potenzielles Onkogen beschrieben und eine Überexpression korreliert mit einer schlechten Prognose. Für SMYD2 wurden verschiedene Substrate beschrieben u.a. Histon H3 und der Tumorsuppressor p53, allerdings ist die Biologie dieses Enzymes kaum verstanden. Durch die Entwicklung einer Testsubstanz zur spezifischen Hemmung von SMYD2 könnte ein möglicher therapeutischer Nutzen besser untersucht werden. Hierfür wurde ein zellulärer mechanistischer Test zur Messung der SMYD2 Aktivität mittels eines methylierungs-spezifischen Antikörpers etabliert. Mit Hilfe dieses Tests wurde BAY-598 als selektiver und potenter zellulärer Hemmer für SMYD2 identifiziert. Im weiteren Verlauf dieser Arbeit wurden mittels eines Proteomansatzes nach SMYD2 Überexpression hunderte neue zelluläre Lysinmethylierungen identifiziert. Hierbei wurde das AHNAK Protein als neues SMYD2-Substrat identifiziert und validiert. Die AHNAK Methylierung konnte in verschiedenen Zelllinien und im Muskelgewebe von Mäusen nachgewiesen werden. Im letzten Teil der Arbeit wurde die spezifische Testsubstanz BAY-598 genutzt, um verschiedene in der Literatur aufgekommene Hypothesen zur SMYD2 Funktion zu testen. Die vorliegende Arbeit hat dazu beigetragen die potente und selektive SMYD2 Testsubstanz BAY-598 zu entwickeln. Außerdem wurde mit AHNAK ein neues SMYD2 Substrat identifiziert und validiert. Die Relevanz des SMYD2 Enzymes und der AHNAK Methylierung erfordert weitere Forschungsarbeit, die durch die Bereitstellung der spezifischen Testsubstanz BAY-598 deutlich verbessert werden sollte. / Protein methyltransferases are often misregulated in tumor cells and display a potential target for cancer therapy. The SET and MYND domain containing protein 2 (SMYD2) was described as a potential oncogene and overexpression correlated with a worse prognosis. Several substrates for SMYD2 had been described among them histone H3 and p53. However, the biology of SMYD2 is poorly understood. By developing a small molecule inhibitor of SMYD2 its therapeutic role could be better evaluated. Therefore, a cellular mechanistic assay was developed using a methylation specific antibody. With that assay BAY-598 was identified as a potent and selective cellular inhibitor of SMYD2. In the following a proteomic approach revealed hundreds of novel cellular lysine methylation sites in SMYD2 overexpression cells. Among these AHNAK protein was validated as a novel SMYD2 substrate, which was present in several cell lines as well as in muscle of mice. Finally, BAY-598 was used to test several hypothesized functions of SMYD2 in different cell line models. Taken together, the current work strongly supported the development of the probe inhibitor BAY-598 and the discovery of AHNAK as a novel SMYD2 methylation substrate. The relevance of SMYD2 and AHNAK methylation needs further investigation, which should be supported by BAY-598.
|
2 |
Characterization of the Protein Lysine Methyltransferase SMYD2Lanouette, Sylvain January 2015 (has links)
Our understanding of protein lysine methyltransferases and their substrates remains limited despite their importance as regulators of the proteome. The SMYD (SET and MYND domain) methyltransferase family plays pivotal roles in various cellular processes, including transcriptional regulation and embryonic development. Among them, SMYD2 is associated with oesophageal squamous cell carcinoma, bladder cancer and leukemia as well as with embryonic development. Initially identified as a histone methyltransferase, SMYD2 was later reported to methylate p53, the retinoblastoma protein pRb and the estrogen receptor ERalpha and to regulate their activity. Our proteomic and biochemical analyses demonstrated that SMYD2 also methylates the molecular chaperone HSP90 on K209 and K615. We also showed that HSP90 methylation is regulated by HSP90 co-chaperones, pH, and the demethylase LSD1. Further methyltransferase assays demonstrated that SMYD2 methylates lysine K* in proteins which include the sequence [LFM]-₁-K*-[AFYMSHRK]+₁-[LYK]+₂. This motif allowed us to show that SMYD2 methylates the transcriptional co-repressor SIN3B, the RNA helicase DHX15 and the myogenic transcription factors SIX1 and SIX2. Finally, muscle cell models suggest that SMYD2 methyltransferase activity plays a role in preventing premature myogenic differentiation of proliferating myoblasts by repressing muscle-specific genes. Our work thus shows that SMYD2 methyltransferase activity targets a broad array of substrates in vitro and in situ and is regulated by intricate mechanisms.
|
Page generated in 0.0199 seconds