• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 53
  • 49
  • 14
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 277
  • 111
  • 79
  • 78
  • 75
  • 62
  • 44
  • 39
  • 38
  • 34
  • 33
  • 33
  • 32
  • 30
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Evaluation of thermal stresses in planar solid oxide fuel cells as a function of thermo-mechanical properties of component materials

Manisha, 10 October 2008 (has links)
Fuel cells are the direct energy conversion devices which convert the chemical energy of a fuel to electrical energy with much greater efficiency than conventional devices. Solid Oxide Fuel Cell (SOFC) is one of the various types of available fuel cells; wherein the major components are made of inherently brittle ceramics. Planar SOFC have the advantages of high power density and design flexibility over its counterpart tubular configuration. However, structural integrity, mechanical reliability, and durability are of great concern for commercial applications of these cells. The stress distribution in a cell is a function of geometry of fuel cell, temperature distribution, external mechanical loading and a mismatch of thermo-mechanical properties of the materials in contact. The mismatch of coefficient of thermal expansion and elastic moduli of the materials in direct contact results in the evolution of thermal stresses in the positive electrode/electrolyte/negative electrode (PEN) assembly during manufacturing and operating conditions (repeated start up and shut down steps) as well. It has long been realized and demonstrated that the durability and reliability of SOFCs is not only determined by the degradation in electrochemical performance but also by the ability of its component materials to withstand the thermal stresses. In the present work, an attempt has been made to evaluate the thermal stresses as a function of thermal and mechanical properties of the component materials assuming contribution from other factors such as thermal gradient, mechanical loading and in-service loading conditions is insignificant. Materials used in the present study include the state of art anode (Ni-YSZ), electrolyte(YSZ) and cathode materials(LM and LSM) of high temperature SOFC and also the ones being suggested for intermediate temperature SOFC Ni-SCZ as an anode, GDC and SCZ as electrolyte and LSCF as the cathode. Variation of thermo-mechanical properties namely coefficient of thermal expansion, and elastic and shear moduli were studied using thermo-mechanical analyzer and resonant ultrasound spectroscope respectively in 25-900°C temperature range. A non-linear variation in elastic and shear moduli- indicative of the structural changes in the studied temperature range was observed for most of the above mentioned materials. Coefficient of thermal expansion (CTE) was also found to increase non-linearly with temperature and sensitive to the phase transformations occurring in the materials. Above a certain temperature (high temperature region- above 600°C), a significant contribution from chemical expansion of the materials was also observed. In order to determine thermal stress distribution in the positive electrode, electrolyte, negative electrode (PEN) assembly, CTE and elastic and shear moduli of the component materials were incorporated in finite element analysis at temperature of concern. For the finite element analysis, anode supported configuration of PEN assembly (of 100mm x 100mm) was considered with 1mm thick anode, 10μm electrolyte and 30μm cathode. The results have indicated that cathode and anode layer adjacent to cathode/electrolyte and electrolyte/anode interface respectively are subjected to tensile stresses at the operating temperature of HT-SOFC (900°C) and IT-SOFC (600°C). However, the magnitude of stresses is much higher in the former case (500MPa tensile stress in cathode layer) when compared with the stress level in IT-SOFC (178MPa tensile stress in cathode layer). These high stresses might have been resulted from the higher CTE of cathode when compared with the adjacent electrolyte. However, it is worth mentioning here that in the present work, we have not considered any contribution from the residual stresses arising from fabrication and the stress relaxation from softening of the glass sealant.
22

VOx /TiO2 anode catalyst for oxidation of CH4 containing 5000 ppm H2S in SOFC

Garcia Rojas, Alfonso Andres Unknown Date
No description available.
23

Investigating carbon-capturing getter anode design using a fast computational tool

Wagner, David Cortese 10 July 2017 (has links)
Solid Oxide Fuel Cells (SOFCs) are a promising technology in the power-generation sector because of their ability to use either hydrocarbons or pure hydrogen. However, introducing hydrocarbons to SOFCs has the negative effect of poisoning the anode of the SOFC with carbon molecules. These carbon deposits in the anode place mechanical stress on the anode and crack the anode interrupting the nickel-based electron percolation network. Gradual interruption of this network increases anode electrical resistance and can eventually lead to complete SOFC functional failure. However, one technology that may reduce premature anode failure due to carbon deposition is the use of a getter anode. A getter anode intercepts the carbon prior to deposition on the functional anode. In this work, A CFD model was modified to incorporate a getter anode, and the functional anode in the study saw a roughly 60% drop in carbon deposition with the addition of a 0.1mm getter anode, compared to the baseline. Also a trend was found that total carbon deposited on the functional anode decreased as the porosity of the getter anode decreased. However, lengthening the getter anode and decreasing its porosity can potentially starve the functional anode of hydrogen fuel, so a tradeoff exists removing carbon and maintaining fuel cell performance.
24

Role of mixed ionic and electronic transport on electrocatalytic activity of infiltrated nanoparticles in solid oxide fuel cell cermet electrodes

Mo, Boshan 22 January 2021 (has links)
The infiltration of nanoparticle electrocatalysts into solid oxide fuel cell (SOFC) electrodes has been proven to produce a high density of electrochemically active sites, and reduce charge transfer polarization losses in SOFC electrodes. This is crucial for intermediate temperature operation, as these losses increase greatly at lower temperatures. Nickel-yttria stabilized zirconia (Ni-YSZ) cermets are low-cost, and exhibit excellent stability, but their main disadvantage stems from nickel coarsening and performance loss over their operational lifetimes. Infiltration of electrocatalyst nanoparticles has been shown to mitigate nickel coarsening and the consequent anode degradation. In this work, the effects of these infiltrants have been observed in a standard Ni-YSZ electrode. In addition to nickel, mixed ionic and electronic conducting (MIEC) phases have been infiltrated into Ni-YSZ scaffolds and their performance characterized using electrochemical impedance spectroscopy (EIS). Cross-sectional microscopy of fractured cells has been used to compare electrode microstructure and particle statistics. A model has been proposed to explain the origin of anode performance enhancement from nanoscale electrocatalysts.
25

LSCF Synthesis and Syngas Reactivity over LSCF-modified Ni/YSZ Anode

Mirzababaei, Jelvehnaz 16 August 2011 (has links)
No description available.
26

An Investigation of Secondary Formations of High Temperature Solid Oxide Fuel Cells

Kaseman, Brian J. 18 April 2012 (has links)
No description available.
27

Perovskite-type oxide material as electro-catalysts for solid oxide fuel cells

Choi, Hyunkyu 20 December 2012 (has links)
No description available.
28

Estudo da reação de oxidação de etanol em ânodos de células a combustível SOFC / Studies of ethanol oxidation reaction over SOFC anodes

Saglietti, Guilherme Gonçalves de Aquino 06 May 2019 (has links)
Células a combustível de óxido sólido (SOFC) produzem energia elétrica em elevadas temperaturas e, devido a isto, não necessitam da utilização de metais nobres para a promoção das reações eletródica em seus eletrodos. Entretanto, independentemente deste fato, quando biocombustíveis são utilizados diretamente há a formação de carbono nos eletrodos, o que promove a rápida degradação do dispositivo. Neste trabalho são preparados e estudados catalisadores anódicos baseados em níquel e num segundo metal para utilização como pré-camada anódica em células a combustível SOFC operando a 800 °C visando-se mitigar os efeitos da formação de carbono, aumentar o desempenho e prolongar a vida útil do dispositivo em operação com biocombustíveis, especialmente o etanol. Foram estudados os metais Co, Cu, Ru, Pd, Rh, e Ba. Os materiais foram caracterizados fisicamente para se estabelecer as suas estruturas cristalográficas bem como composição e morfologia. Estudou-se também o desempenho eletroquímico através do levantamento de curvas de polarização em estado estacionário, espectroscopia de impedância eletroquímica e cronoamperometria. Por fim, utilizou-se a técnica de espectrometria de massas para identificação de produtos reacionais. Da maneira como utilizadas, as camadas préanódicas atuaram como um filtro catalítico, promovendo reações de reforma e entregando ao ânodo um combustível com menor teor carbonáceo. Desta maneira todos os materiais mostraram-se em certa extensão capazes de promover a operação de células SOFC com etanol. Observou-se também atividade catalítica para outros combustíveis, sendo possível até mesmo a operação com metano e propano. Para fins deste estudo, o material que demonstrou melhor comportamento ante a operação com etanol tratou-se do NiRu, sendo alcançadas densidades de potência próximas a 0,9 W cm-2 a 500 mV. Em teste de durabilidade observou-se que a célula contendo este material operou por 150 h ininterruptas, ante 15 minutos possíveis para a célula sem proteção. / Solid Oxide Fuel Cells produce electrical energy at high temperatures without the need of noble metals. However, when a biofuel is directly used, carbon formation takes place, also known as \"coking\", which promotes rapid system degradation. In this work, bimetallic nickel based anodic catalysts are prepared and studied as anode prelayers for SOFC working at 800 °C fed with ethanol. The aims are to mitigate the effects of coking, improve the cell performance and extend the life usage of these devices when operating with biofuels, specially ethanol. As second metals Co, Cu, Ru, Pd, Rh and Ba were studied. The catalysts were physically characterized to establish their crystal structures as well as their chemical composition, and morphology. Electrochemical performance was studied using steady state olarization curves, electrochemical impedance spectroscopy and chronoamperometry for lifetime tests. Mass spectrometry was used in order to identify reactional products. In the way they were conceived and used, the anodic pre-layers worked as catalytic filters, promoting reforming reactions, delivering to anode surface a fuel with lower carbon content. All the studied materials showed in some extent activity for SOFC operating with biofuels, even making possible the operations with methane and propane. In the studies, NiRu material showed the best performance when operating with ethanol, reaching power densities as high as 0,9 W cm-2 at 500 mV. Endurance test made with this material showed that by using the NiRu based anode pre-layer fed with ethanol, under different load conditions, it is possible to operate the SOFC for about 150 h without interruption, versus 15 minutes for the uncovered anode.
29

Síntese e caracterização de pós de silicato de lantânio tipo apatita para eletrólito em SOFC / Synthesis and characterization of lanthanum silicate apatite type powders for SOFC electrolyte

Elias, Daniel Ricco 24 January 2014 (has links)
A temperatura de operação de células a combustível de óxido sólido (SOFCs) que utilizam zirconia estabilizada com itria (YSZ) como eletrólito é 1000 oC. Essa alta temperatura gera graves problemas relativos a materiais e vida util da célula. Por isso, condutores iônicos que possuem alta condutividade em temperaturas inferiores são pesquisados atualmente. Estudos mostraram que La10Si6O27 tipo apatita possui alta condutividade iônica de oxigenio, que é comparativamente maior que a de YSZ, a 500 oC, sendo, portanto, um potencial candidato como eletrólito para SOFC. O objetivo do presente trabalho é o desenvolvimento de técnicas de síntese de silicato de lantânio tipo apatita. Rotas inéditas de solgel modificada para sintetizar La9,33Si6O26 são propostas. Volumes estequiométricos de soluções de Na2SiO3 e LaCl3 foram misturados para a formação de gel de Si. Em seguida este gel foi calcinado a 900 °C, lavado, filtrado e tratado novamente a 900 °C. Em outra rota, volumes estequiométricos de soluções de Si (Na2SiO3 ou TEOS) e de La (LaCl3) foram utilizados para obtenção de gel de Si. Em seguida, hidróxido de La foi precipitado pela adição de uma base (NaOH ou NH4OH) ao gel. O material resultante foi calcinado a 900 °C, lavado, filtrado e tratado novamente a 900 °C. Pós de aglomerados fracos e alta sinterabilidade foram obtidos. DRX dos pós mostrou a estrutura de apatita monofásica a 900 oC. Morfologia de ceramica densa foi observada em imagens de MEV da superfície das pastilhas sinterizadas a 1200,1300 e 1400 oC por 4 h. Estas temperaturas e tempo de sinterização são significativas, pois no método convencional temperaturas superiores a 1700oC e tempos muito maiores são necessários para obtenção de tais cerâmicas. Densidades relativas superiores a 90% foram obtidas através dos métodos propostos. Uma conclusão importante é que TEOS, o reagente usual de alto custo, pode ser substituído por Na2SiO3, de preço muito mais baixo, para obter La9,33Si6O26 tipo apatita. / Solid oxide fuel cell (SOFCs) operating temperature that uses yttria stabilized zirconia (YSZ) as the electrolyte is 1000ºC. This high temperature causes serious problems concerning cell life and materials. Therefore, the ionic conductors which have high conductivity at lower temperature are currently researched. Studies have shown that the composition of La10Si6O27 apatite type has high oxygen ionic conductivity, which is comparably higher than that of YSZ, at 500 oC, it is therefore a potential candidate as for SOFC electrolyte. The objective of the present work is the development of lanthanum silicate with apatite type synthesis techniques. Novel modified solgel routes to synthesize La9.33Si6O26 are proposed. Stoichiometric volumes of Na2SiO3 and LaCl3 solutions were mixed for the formation of Si gel. This gel was calcined at 900 °C, washed, filtered and again thermally treated at 900 °C. In the other route, stoichiometric volumes of Si (Na2SiO3 or TEOS) and La (LaCl3) solutions were used for obtaining Si gel. Then, La hydroxide was precipitated by adding of a base (NaOH or NH4OH) to gel. Then the material was calcined at 900 °C, washed, filtered and again treated at 900 °C. Highly sinterable weakly agglomerated powders have been obtained. XRD patterns of the powders showed the single-phase apatite structure at 900 oC. Dense ceramic morphology was observed from the SEM images of surface of the pellets sintered at 1200, 1300 and 1400oC for 4h. This low temperature sintering and time of sintering are significant because the conventional method requires superior temperatures of 1700 oC to obtain the same dense ceramics. High relative densities higher than 90% was obtained via proposed methods. An Important conclusion is the TEOS, the usual high cost reagent, may be substituted by a cheap price Na2SiO3, to obtain apatite type La9.33Si6O26.
30

Estudo de síntese de silicato de lantânio tipo apatita pelo método sol-gel seguido de precipitação de Na2SiO3 / Synthesis study of lanthanum silicate apatite type by sol-gel method followed by precipitation from Na2SiO3

Silva, Fernando dos Santos 01 December 2016 (has links)
Cerâmicas de silicato de lantânio tipo apatita têm sido estudadas devido ao grande interesse tecnológico para aplicação como eletrólito em células a combustível de óxido sólido de temperatura intermediária (IT-SOFC: Intermediate Temperature Solid Oxide Fuel Cell). A condutividade iônica dessas cerâmicas em temperaturas intermediárias (600-800°C) é maior do que a da YSZ (Ytria Stabilized Zirconia) utilizada como eletrólito em SOFCs de alta temperatura (800-1000°C). Neste trabalho, silicato de lantânio tipo apatita foi sintetizado pelo método sol-gel seguido de precipitação, a partir de Na2SiO3 como fonte de sílica. No método proposto, estudou-se rotas de síntese em meio ácido e básico para a formação do gel de sílica, seguida de precipitação. A fase cristalina de silicato de lantânio tipo apatita foi obtida pela calcinação de pós sintetizados a 900°C. Esta temperatura é muito inferior às praticadas em outros métodos convencionais de síntese. As análises por difração de raios X (DRX) mostraram silicato de lantânio tipo apatita como fase principal do material sintetizado na rota de síntese em pH ácido. No entanto, uma fase secundária indesejável, La2Si2O7, foi identificada quando o pó cerâmico foi calcinado a 1200°C. Por outro lado, pela rota básica, fase única de silicato de lantânio tipo apatita foi obtida após tratamento térmico dos precursores a 900 e 1200°C. Pastilha cerâmica obtida a partir dos pós obtidos e sinterizados a 1400°C por 4h, apresentaram fase cristalina pura de silicato de lantânio tipo apatita. Microscopia eletrônica de varredura (MEV) foi utilizada para observar a morfologia dos pós e microestrutura das pastilhas sinterizadas. Pós cerâmicos finos com tamanho de partículas submicrométricas e microestrutura típica de apatita foram alcançadas pelo método proposto. / Lanthanum silicate apatite-type ceramics have been studied because of the great technological interest for IT-SOFC applications as electrolyte (Intermediate Temperature Solid Oxide Fuel Cell). Ionic conductivity of those ceramics at intermediate temperatures (600-800°C) is higher than that of YSZ (Ytria Stabilized Zirconia) electrolyte used at high-temperatures (800-1000 °C) SOFCs. In this work, lanthanum silicate apatite-type was synthesized by sol-gel method followed by precipitation from Na2SiO3 as a source of silica. In the proposed method, synthesis routes in acid and basic medium to the formation of silica gel, followed by precipitation were studied. Apatite crystalline phase of lanthanum silicate ceramic was obtained by calcining the powders at 900°C. This temperature is much lower than those other conventional methods of synthesis. Analysis by x-ray diffraction (XRD) showed the lanthanum silicate apatite-type phase as the main phase of the synthesized material at the pH acid synthesis route. However, undesirable secondary phase, La2Si2O7, was recognized when the powder was calcined at 1200°C. On the other hand, by the basic route, single apatite-type phase powder was obtained after thermal treatment of the precursors at 900 and 1200°C. Ceramic pellet obtained from those powders sintered at 1400°C for 4h, presented pure apatite crystalline phase of lanthanum silicate. Scanning electron microscopy (SEM) was used to observe morphology of powders and microstructure of sintered pellets. Sub micrometric size powders and apatite typical microstructure ceramic were reached by the suggested method.

Page generated in 0.0226 seconds