• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • Tagged with
  • 12
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nouveaux matériaux à conduction mixte protonique-électronique : Développement de membranes sélectives destinées à la séparation de l'hydrogène / Novel mixed protonic-electronic materials : Development of selective membranes devoted for hydrogen separation

Mao, Visot 05 December 2016 (has links)
La formulation de matériaux à conduction mixte protonique-électronique (MIEC-H+) performants constituerait une avancée majeure pour le développent d’applications liées au vecteur hydrogène. En particulier cette classe de matériaux constitue une alternative prometteuse aux membranes métalliques ou poreuses pour les dispositifs dédiés de la séparation de l’hydrogène. L’objectif de ce travail de thèse a ainsi été de développer, de caractériser des matériaux présentant des conductivités suffisantes pour l’application visée, de mettre en forme des membranes et d’évaluer leurs performances.La première approche a consisté développer des matériaux monophasiques par substitution d’oxydes conducteurs protoniques par un élément multivalent, Ba(Ce0.5Zr0.5)0.9-xPrxY0.1O3-δ). Parallèlement, nos travaux ont porté sur des composites céramique-céramique constitués d’une phase à conduction protonique et d’une phase à conduction électronique dans des conditions réductrices, xBaCe0.9Y0.1O3-δ-(1-x)Ce0.9Y0.1O2-δ et xBaZr0.9Y0.1O3-δ-(1-x)CeY0.1O2-δ.Les résultats les plus prometteurs en terme de conductivité (> 100 mS.cm-1 @ 600°C) ont été obtenus avec le composite de composition 20BaZr0.9Y0.1O3-δ-80Ce0.9Y0.1O2-δ qui présente une perméabilité à l’hydrogène (VALEUR) du même ordre de grandeur que les meilleures reportées dans la littérature. / The formulation of high-performance mixed protonic-electronic conductors (MPEC) presents a major advancement for the development of hydrogen-linked application. In particular, this class of materials constitute a promising alternative to the metallic or porous membranes for devices devoted for separation of hydrogen. Thus, objective of this thesis work is to develop, characterize materials presenting sufficient conductivities for the targeted applications, to fabricate the membrane and to evaluate their performances.The first approach consisted of developing single-phase materials by substitution of proton-conducting oxides by a multivalent element, Ba(Ce0.5Zr0.5)0.9-xPrxY0.1O3-δ. In parallel, our works focused on the ceramic-ceramic composites which were consisted of a proton-conducting phase and an electron-conducting phase in reducing conditions, xBaCe0.9Y0.1O3-δ-(1-x)Ce0.9Y0.1O2-δ et xBaZr0.9Y0.1O3-δ-(1-x)CeY0.1O2-δ.The most promising results in terms of conductivity (> 100 mS.cm-1 @ 600°C) was obtained with the composite of composition 20BaZr0.9Y0.1O3-δ-80CeY0.1O2-δ which presented hydrogen permeability in the same order of magnitude as the best values reported in the literature.
2

Role of mixed ionic and electronic transport on electrocatalytic activity of infiltrated nanoparticles in solid oxide fuel cell cermet electrodes

Mo, Boshan 22 January 2021 (has links)
The infiltration of nanoparticle electrocatalysts into solid oxide fuel cell (SOFC) electrodes has been proven to produce a high density of electrochemically active sites, and reduce charge transfer polarization losses in SOFC electrodes. This is crucial for intermediate temperature operation, as these losses increase greatly at lower temperatures. Nickel-yttria stabilized zirconia (Ni-YSZ) cermets are low-cost, and exhibit excellent stability, but their main disadvantage stems from nickel coarsening and performance loss over their operational lifetimes. Infiltration of electrocatalyst nanoparticles has been shown to mitigate nickel coarsening and the consequent anode degradation. In this work, the effects of these infiltrants have been observed in a standard Ni-YSZ electrode. In addition to nickel, mixed ionic and electronic conducting (MIEC) phases have been infiltrated into Ni-YSZ scaffolds and their performance characterized using electrochemical impedance spectroscopy (EIS). Cross-sectional microscopy of fractured cells has been used to compare electrode microstructure and particle statistics. A model has been proposed to explain the origin of anode performance enhancement from nanoscale electrocatalysts.
3

Discrete Numerical Simulations of Solid Oxide Fuel Cell Electrodes: Developing New Tools for Fundamental Investigation

Mebane, David Spencer 14 November 2007 (has links)
A program of study has been established for the quantitative study of electrode reactions in solid oxide fuel cells. The initial focus of the program is the mixed conducting cathode material strontium-doped lanthanum manganate (LSM). A formalism was established treating reactions taking place at the gas-exposed surface of mixed conducting electrodes. This formalism was incorporated into a phenomenological model for oxygen reduction in LSM, which treats the phenomenon of sheet resistance. Patterned electrodes were designed that reduce the dimensionality of the appropriate model, and these electrodes were successfully fabricated using DC sputtering and photolithography. A new model for the bulk defect equilibrium in LSM was proposed and shown to be a better fit to nonstoichiometry data at low temperatures. The fitting was carried out with a particle swarm optimizer and a rigorous method for identification. It was shown that a model for the interface structure between LSM and yttria-stabilized zirconia (YSZ) that assumes free oxygen vacancies in YSZ does not accord with experimental observations. Cluster variation method (CVM) was adapted for analysis of the problem, and a new analytical method combining CVM and electrical contributions to the free energy was proposed.
4

Solar-driven Hydrogen Production by the use of MIEC Membranes : A Techno-Economic Assessment

Nilsson, Mattias January 2012 (has links)
This thesis comprises an assessment of a novel concept to produce high purity hydrogen using mixed oxide ion/electronic conductor (MIEC) membranes and energy provided by solar concentrators (i.e. parabolic troughs or parabolic dishes). The vision of this concept is that it will be used to produce tons of high purity hydrogen for fuel cells, which is a scarce commodity with an increasing demand from residential and transportation power generation applications. The MIEC membrane activates a steam reforming reaction between water and methane to produce hydrogen of high purity on the water side and syngas on the fuel side. Expectations are that this concept has cost advantages over other thermo-chemical water-dissociation methods, using a lower temperature and no electricity for the reaction process. The thesis’ focus is on techno-economic aspects of the concept, as part of an application process for project financing by the European Commission of Research and Innovation. The assessment in the thesis shows that the overall efficiency of the concept is expected to be very low. It also identifies the difficulties of providing stable working conditions for the concept. Suggestions to improve the concept are proposed to address the most urgent problems of the concept. These suggestions illuminate the opportunities that actually do exist to combine MIEC membranes, solar energy and thermo-chemical water splitting into a working concept. These improvements include using parabolic dishes instead of parabolic troughs, using furnaces with control systems and using a viable flow rate. The production capacity of high purity hydrogen is expected to be approximately 89 mg per minute in a membrane bundle (i.e. 150 thin membrane fibers with an oxygen permeation flux of 1 ml cm-2 min-1) if these improvements were implemented. This would imply that the studied concept needs further development to produce high purity hydrogen in quantities that could meet the shortage on the commercial fuel cell markets.
5

Synthèse et caractérisation de nouveaux matériaux de cathode pour piles à combustible à conduction protonique PCFC (Protonic Ceramic Fuel Cell) / Synthesis and characterization of new PCFC (Protonic Ceramic Fuel Cell) cathode materials

Dailly, Julian 16 December 2008 (has links)
Le développement de piles à combustibles capables de fonctionner à des températures intermédiaires de l’ordre de 400-600°C présente un grand intérêt tant du point de vue du vieillissement des matériaux que des différents éléments du système complet. Une des technologies envisagées est basée sur l’utilisation d’électrolyte céramique possédant une conduction protonique élevée (Protonic Ceramic Fuel Cell PCFC). A ce jour, un des problèmes principaux concerne les fortes surtensions observées au niveau de la cathode lors du passage d’un courant. Dans ce cadre, le but de nos recherche a été de concevoir de nouveaux matériaux de cathode pour pile PCFC présentant de bonnes propriétés de conduction mixte ionique et électronique ainsi qu’une activité catalytique élevée vis-à-vis de la réaction de réduction de l’oxygène, entre 400 et 600°C. Plusieurs matériaux à conduction mixte ont été synthétisés à l’ICMCB, notamment des perovskites et des oxydes de structure de type Ruddlesden-Popper (en particulier les oxydes A2MO4+?). Des analyses thermogravimétriques ont été réalisées pour étudier la stabilité de ces phases sous air humide, ainsi qu’une éventuelle insertion d’eau dans la structure. Des demi-cellules symétriques ont été élaborées pour les caractérisations éléctrochimiques par spectroscopie d’impédance complexe et voltampérométrie (mesures de résistances spécifiques de surface, courbes de polarisation cathodique). Les caractérisations physico-chimiques et électrochimiques ont permit de sélectionner les meilleurs composés et ont conduit à la réalisation de la première monocellule PCFC utilisant le matériau de cathode Pr2NiO4+?. Des densités de puissance de 100 mW/cm² ont été mesurées pour une température de fonctionnement de 600°C. / Development of Fuel Cell operating at intermediate temperatures (400-600°C) is more and more interesting regarding ageing of materials. One of these technologies is based on ceramic electrolytes with high protonic conductivity (Protonic Ceramic Fuel Cell, PCFC). Nowadays, the major problem is overpotential at the cathode side, under polarization. In this context, our researches aimed to elaborate new cathode materials for PCFC with high mixed conductivity and good electrocatalytic property toward oxygen reduction, between 400 and 600°C. Several materials have been synthesised at the ICMCB, like perovskites and Ruddlesden-Popper type phase (A2MO4+?). Thermogramvimetric analyses have been realised in order to study phase stability under moist air and a possible insertion of water in the structure. Symmetrical half-cells have been elaborated for Electrochemical Impedance Spectroscopy and voltametric measurements (measure of Area Specific Resistance, cathodic polarization curves). The physico-chemical and electrochemical characterizations were useful to choose the best compounds and lead to fabrication of the first cell PCFC with Pr2NiO4+? as cathode materials. Power densities of 100mW/cm² have been reached for a working temperature of 600°C.
6

Preparation and performance of BSCF-based Mixed Ionic-Electronic Conducting (MIEC) ceramics

Lu, Huanghai January 2016 (has links)
Preparation and performance of the perovskite-type barium strontium cobalt iron oxide (Ba_0.5 Sr_0.5 Co_0.8 Fe_0.2 O_(3-δ), BSCF) and its doped compositions were studied in this dissertation. Three transition metals (copper, nickel and niobium) were substituted into the parent BSCF at various ratios to create the formula Ba_0.5 Sr_0.5 (Co_0.8 Fe_0.2)_(1-x) M_x O_(3-δ) (0.02≤x≤0.30; M=Cu,Ni or Nb). Two synthetic methods (solid-state reaction and wet chemical co-precipitation) were developed for the preparation of starting powders. In the previous reports [1, 2], BSCF ceramics suffered from insufficient densification and severe cracking; these problems were resolved in this study by optimising the ceramic processing conditions. The phase transition sequences from starting powders to single-phase cubic perovskite were studied by SEM, XRD, TGA, EDS and Raman spectroscopy. The powders prepared by solid-state method were found to require higher calcination temperature to form pure perovskite phase, and an extra intermediate structure (Ba,Sr)Fe_2 O_4 was detected in the reaction sequence. The materials performance was examined from five aspects: thermal stability, chemical stability, oxygen permeability, electronic conductivity and mechanical performance. The secondary phases of thermal/chemical degradation were investigated, and a needle-like intragranular precipitate was originally discovered in this work. It was discovered that the niobium substitution could significantly improve BSCF’s thermal stability and chemical stability. The oxygen permeability and mechanical performance were also improved by niobium when the substitution ratios are small (< 10%). Although the electronic conductivity was lowered by niobium substitution as a trade-off, it does not become a drawback to restrict the materials’ potential applications as mixed ionic-electronic conductors (MIEC).Furthermore, the material system’s “composition - lattice structure - performance” relationships were systematically investigated in this work; the oxygen deficiency value (δ) and the average bond energy (ABE) were found to have strong correlations with the materials performance.
7

Thermal stability of potential fuel cell core materials La2Mo2-yWyO9 (0 ≤ y ≤ 2.0) under air and reductive atmospheres, and in contact with a Sr containing cathode material

Ravella, Uday Krishna 21 September 2012 (has links) (PDF)
La2Mo2-yWyO9 (y = 1.0 to 2.0) oxides were synthesized by conventional solid state route and studied by XRD, TC-XRD and DTA. A phase diagram of the series was proposed. The thermodynamically stable phases at room temperature are: for 1.0≤ y ≤1.2 a cubic β-La2Mo2O9 type solid solution, for 1.3≤ y ≤1.575 a biphasic mixture of β-La2Mo2O9 type + α-La2W2O9 type phases, and for 1.6≤ y ≤2.0 a triclinic α-La2W2O9 type solid solution. Inhomogeneous distribution of W is suspected in the biphasic samples. It is clear that the compounds above y =1.2 are not suitable for SOFC applications.Cationic diffusion studies were performed using SIMS on La2Mo2O9 (LMO)/La0.8Sr0.2MnO3-δ (LSM) annealed couples. Rod shaped LaMnO3 grains were observed on LMO pellet and SrMoO4 type phases were seen to be growing on LSM pellet. Hypotheses for possible reaction mechanisms are presented. Bulk diffusion coefficients of Sr and Mn in LMO and of Mo in LSM are extrapolated to be around 1x10-20 cm2.s-1 and 1x10-15 cm2.s-1, respectively, at 800oC. Similar diffusion studies were performed by depositing Mn and Sr cation rich solutions on LMO pellets and Mo rich solution on LSM pellet. Mn solution was observed to be forming, upon annealing, LaMnO3 single crystals on the surface of the LMO pellet. Mo in LSM and Sr in LMO diffusion coefficients appear to be much higher than in LMO/LSM couple experiments, namely around 1-2x10-10cm2.s-1 at 1150°C. Because of the reactivity, LMO/LSM couple is not desirable for SOFC applications, unless an appropriate buffer layer separates them.The stability of LMO and W-LMO was studied under reductive atmospheres. Successive structural changes from LMO to La7Mo7O30 (7730), an amorphous reduced phase La2Mo2O7-δ, and partial decomposition to metallic Mo were observed as a function of oxygen loss. The pO2 stability domain of La2Mo2-yWyO9 did not appear to change with W content, but the reduction kinetics varied with y. At reverse, the stability limit of the 7730 phase was found to be dependent on W content. The amorphous reduced phase can accommodate a wide range of oxygen stoichiometry (7-δ from 6.69 to 6.20), but its stability vs. pO2 is questioned. Resistivity measurements performed on a low compacity crack-free amorphous La2Mo2O7-δ sample showed significant increase in the conductivity (> 1 S.cm-1 at 1000 K) relative to La2Mo2O9, with a pseudo activation energy 0.255eV. It is postulated that n-type electronic conductivity arises from partial reduction of hexavalent Mo6+ to a mixture of Mo3+ and Mo4+.
8

Synthèse et caractérisation de nouveaux matériaux de cathode pour piles à combustible à conduction protonique PCFC (Protonic Ceramic Fuel Cell)

Dailly, Julian 16 December 2008 (has links) (PDF)
Le développement de piles à combustibles capables de fonctionner à des températures intermédiaires de l'ordre de 400-600°C présente un grand intérêt tant du point de vue du vieillissement des matériaux que des différents éléments du système complet. Une des technologies envisagées est basée sur l'utilisation d'électrolyte céramique possédant une conduction protonique élevée (Protonic Ceramic Fuel Cell PCFC). A ce jour, un des problèmes principaux concerne les fortes surtensions observées au niveau de la cathode lors du passage d'un courant.<br>Dans ce cadre, le but de nos recherche a été de concevoir de nouveaux matériaux de cathode pour pile PCFC présentant de bonnes propriétés de conduction mixte ionique et électronique ainsi qu'une activité catalytique élevée vis-à-vis de la réaction de réduction de l'oxygène, entre 400 et 600°C. Plusieurs matériaux à conduction mixte ont été synthétisés à l'ICMCB, notamment des perovskites et des oxydes de structure de type Ruddlesden-Popper (en particulier les oxydes A2MO4+). Des analyses thermogravimétriques ont été réalisées pour étudier la stabilité de ces phases sous air humide, ainsi qu'une éventuelle insertion d'eau dans la structure. Des demi-cellules symétriques ont été élaborées pour les caractérisations éléctrochimiques par spectroscopie d'impédance complexe et voltampérométrie (mesures de résistances spécifiques de surface, courbes de polarisation cathodique).<br>Les caractérisations physico-chimiques et électrochimiques ont permit de sélectionner les meilleurs composés et ont conduit à la réalisation de la première monocellule PCFC utilisant le matériau de cathode Pr2NiO4+. Des densités de puissance de 100 mW/cm² ont été mesurées pour une température de fonctionnement de 600°C.
9

Stabilité et vieillissement des études de nickelates base praséodyme comme cathodes pour oxyde solide piles à combustible / Stability and ageing studies of praseodymium-based nickelates as cathodes for Solid Oxide Fuel Cells

Vibhu, Vaibhav 12 February 2016 (has links)
Ce travail de thèse est consacré à l’étude des nickelates La2-xPrxNiO4+δ, comme nouveaux matériauxde cathodes pour piles à combustible haute température, SOFC, et en particulier à la caractérisationde leur stabilité chimique et leur comportement en fonctionnement. En effet, du fait de leurpropriété de conduction mixte ionique et électronique, MIEC, les nickelates de structure typeK2NiF4, Ln2NiO4+δ (Ln = La, Pr, Nd), correspondant au terme n = 1 de la série de Ruddlesden-Popper (An+1MnO(3n+1)), sont des matériaux prometteurs pour des fonctionnements à températureintermédiaire, IT-SOFC (T < 800 °C). Compromis entre la stabilité chimique de La2NiO4+δ et lestrès bonnes performances électrochimiques de Pr2NiO4+δ, les phases La2-xPrxNiO4+δ, ont étésynthétisées et leurs propriétés physico-chimiques, de transport et électrochimiques ont étédéterminées. L’étude approfondie des caractéristiques des électrodes par spectroscopied’impédance en cellules symétriques a été réalisée à courant nul et sous polarisation anodique etcathodique sur des périodes d’un mois. De façon surprenante, même après la dissociation complètede Pr2NiO4+δ en PrNiO3-δ, Pr4Ni3O10+δ et Pr6O11, la résistance de polarisation ne montre pas dechangement significatif. L’étude de PrNiO3-δ et Pr4Ni3O10+δ, comme matériau de cathode pour pilesà combustible, démontre l’excellent comportement de la phase Pr4Ni3O10+δ et ceci en cellulesymétrique (Rp (Pr4Ni3O10+δ) = Rp (Pr2NiO4+δ) = 0.15 Ω.cm² à 600 ° C) et cellule complète (1.6W.cm-2 at 800 °C). / This PhD work is dedicated to stability and ageing studies of Praseodymium based nickelates ascathodes for Solid Oxide Fuel Cells (SOFCs). With this respect Ln2NiO4+δ (Ln=La, Pr or Nd)compounds with the K2NiF4 type structure act as alternative cathode materials for IT-SOFC due totheir mixed ionic and electronic conductivity (i.e. MIEC properties). Pr2NiO4+δ shows excellentelectrochemical properties at intermediate temperature (i.e. low polarization resistance Rp value, Rp= 0.03 Ω.cm² at 700 °C), while La2NiO4+δ exhibits higher chemical stability. So, the properties ofLa2-xPrxNiO4+δ nickelates were investigated with the aim to find best compromise between chemicalstability and electrochemical performances. After synthesis, the physical and chemical properties aswell as their transport and electrochemical properties have been determined. Measurements of thepolarization resistance of symmetrical half-cells have been carried out by impedance spectroscopy.Then, the chemical stability and the electrochemical performance of the materials have been studiedfor duration up to one month. As an interesting point, even after complete dissociation of Pr2NiO4+δinto PrNiO3-δ,Pr4Ni3O10+δ and Pr6O11, the polarization resistance does not show significant change.So finally, two new materials PrNiO3-δ and Pr4Ni3O10+δ were investigated as SOFCs cathodeshowing very promising results for Pr4Ni3O10+δ in symmetrical cell (Rp (Pr4Ni3O10+δ) = Rp(Pr2NiO4+δ) = 0.15 Ω.cm² à 600 ° C) and complete cell (1.6 W.cm-2 at 800 °C).
10

Thermal stability of potential fuel cell core materials La2Mo2-yWyO9 (0 ≤ y ≤ 2.0) under air and reductive atmospheres, and in contact with a Sr containing cathode material / Stabilité thermique des matériaux potentiels de coeur de pile à combustible La2Mo2-yWyO9 (0 ≤ y ≤ 2.0) sous air, sous atmosphère réductrice, et en contact avec un matériau de cathode contenant du strontium

Ravella, Uday Krishna 21 September 2012 (has links)
Les oxydes La2Mo2-yWyO9 (1,0 ≤y ≤ 2,0) ont été obtenus par voie de synthèse solide-solide et caractérisés par diffraction des rayons X (température ambiante et en température) ainsi que par analyse thermique différentielle. Un diagramme de phase de ce système est proposé. Les phases thermodynamiquement stables à température ambiante sont : pour 1,0≤ y ≤1,2 une solution solide de type β-La2Mo2O9 (cubique); pour 1,3≤ y ≤1,575 un domaine biphasique de phases de type β-La2Mo2O9+ α-La2W2O9 et pour 1,6≤ y ≤2,0 une solution solide de type α-La2W2O9. Dans le domaine biphasique, une distribution inhomogène du tungstène est suspectée. Il est clair que les composés à teneur en tungstène supérieure à y=1,2 ne conviennent pas pour utilisation en piles à combustibles à oxydes solides.Des études de diffusion cationiques par SIMS ont été menées sur des couples La2Mo2O9 (LMO)/La0.8Sr0.2MnO3-δ (LSM) après leurs recuits à haute température. Des cristaux de LaMnO3 en forme de barreau ont été observés sur les pastilles de LMO et la croissance d’une phase de type SrMoO4 a été constatée sur la pastille LSM. Des hypothèses expliquant les mécanismes possibles de diffusion sont présentés. Les coefficients de diffusion en volume du strontium et du manganèse dans LMO et du molybdène dans LSM sont estimés proches respectivement de 1x10-20 cm2.s-1 et 1x10-15 cm2.s-1 à 800°C. Des études similaires de diffusion ont été menées par dépôts de solutions riches en cations manganèse et strontium sur des pastilles de LMO et d’une solution riche en cation molybdène sur une pastille de LSM. Après recuit, la formation de cristaux de LaMnO3 au niveau de la zone de dépôt de la solution de manganèse a été observée. Les coefficients de diffusion du molybdène dans LSM et du strontium dans LMO semblent être beaucoup plus importants -proches de 1-2x10-10cm2.s-1 à 1150°C- que ceux obtenus lors des mesures sur couple LMO/LSM. De par leur réactivité, le couple LMO/LSM ne semble pas adapté pour une application dans le domaine des piles à combustible, sauf si une couche tampon appropriée les sépare.Les stabilités de LMO et de LMO dopé tungstène ont été étudiées sous atmosphères réductrices. Suivant le taux de perte en oxygène, des changements structuraux successifs ont été observés : de phase LMO à La7Mo7O30(7730), phase amorphe réduite La2Mo2O7-δ et décomposition partielle sous forme de molybdène métallique. Le domaine de stabilité de La2Mo2-yWyO9 sous faible pression de O2 ne semble pas dépendant du taux de tungstène alors que la cinétique de réduction, elle, évolue avec y. En revanche, la limite de stabilité de la phase 7730 apparait dépendante du taux de tungstène. La phase réduite amorphe existe sur un large domaine de stoechiométrie en oxygène (7-δ de 6,69 à 6,20), cependant sa stabilité vs. PO2 reste à démontrer. Les mesures de résistivité conduites sur un échantillon amorphe de La2Mo2O7-δ de faible compacité et sans fissure ont montré une augmentation significative de la conductivité (> 1 S.cm-1 à 1000 K) vis-à-vis de La2Mo2O9, avec une pseudo-énergie d’activation de 0.255eV. Il a été supposé qu’une conductivité électronique de type n résulte de la réduction partielle des cations Mo6+ en Mo3+ et Mo4+. / La2Mo2-yWyO9 (y = 1.0 to 2.0) oxides were synthesized by conventional solid state route and studied by XRD, TC-XRD and DTA. A phase diagram of the series was proposed. The thermodynamically stable phases at room temperature are: for 1.0≤ y ≤1.2 a cubic β-La2Mo2O9 type solid solution, for 1.3≤ y ≤1.575 a biphasic mixture of β-La2Mo2O9 type + α-La2W2O9 type phases, and for 1.6≤ y ≤2.0 a triclinic α-La2W2O9 type solid solution. Inhomogeneous distribution of W is suspected in the biphasic samples. It is clear that the compounds above y =1.2 are not suitable for SOFC applications.Cationic diffusion studies were performed using SIMS on La2Mo2O9 (LMO)/La0.8Sr0.2MnO3-δ (LSM) annealed couples. Rod shaped LaMnO3 grains were observed on LMO pellet and SrMoO4 type phases were seen to be growing on LSM pellet. Hypotheses for possible reaction mechanisms are presented. Bulk diffusion coefficients of Sr and Mn in LMO and of Mo in LSM are extrapolated to be around 1x10-20 cm2.s-1 and 1x10-15 cm2.s-1, respectively, at 800oC. Similar diffusion studies were performed by depositing Mn and Sr cation rich solutions on LMO pellets and Mo rich solution on LSM pellet. Mn solution was observed to be forming, upon annealing, LaMnO3 single crystals on the surface of the LMO pellet. Mo in LSM and Sr in LMO diffusion coefficients appear to be much higher than in LMO/LSM couple experiments, namely around 1-2x10-10cm2.s-1 at 1150°C. Because of the reactivity, LMO/LSM couple is not desirable for SOFC applications, unless an appropriate buffer layer separates them.The stability of LMO and W-LMO was studied under reductive atmospheres. Successive structural changes from LMO to La7Mo7O30 (7730), an amorphous reduced phase La2Mo2O7-δ, and partial decomposition to metallic Mo were observed as a function of oxygen loss. The pO2 stability domain of La2Mo2-yWyO9 did not appear to change with W content, but the reduction kinetics varied with y. At reverse, the stability limit of the 7730 phase was found to be dependent on W content. The amorphous reduced phase can accommodate a wide range of oxygen stoichiometry (7-δ from 6.69 to 6.20), but its stability vs. pO2 is questioned. Resistivity measurements performed on a low compacity crack-free amorphous La2Mo2O7-δ sample showed significant increase in the conductivity (> 1 S.cm-1 at 1000 K) relative to La2Mo2O9, with a pseudo activation energy 0.255eV. It is postulated that n-type electronic conductivity arises from partial reduction of hexavalent Mo6+ to a mixture of Mo3+ and Mo4+.

Page generated in 0.0225 seconds