231 |
EXPRESSION OF COMPLEMENT RECEPTORS 1 (CR1/CD35) AND 2 (CR2/CD21) AND CO-SIGNALING MOLECULE, CD19 IN CATTLEPringle, Eric S. 20 June 2011 (has links)
C3d is a sub-fragment of the C3 component of the complement system. Covalent binding of multiple C3ds to antigen reduces the activation threshold of cognate B lymphocytes by one thousand fold through co-ligation of the BCR and complement receptor 2 (CR2/CD21). Reverse transcriptase polymerase chain reaction (RT-PCR), revealed that, in cattle, four distinct complement receptors are produced from the Cr2 gene by alternative splicing. Cattle express two major variants of the Cr2 gene representing homologues of murine CR1 and CR2, each of which are expressed in both a long and a short form. Expression of CR1 was detected in splenocytes but not in splenic mononuclear cells or monocyte derived macrophages. CR2 was detected only on IgM+ blood cells and unsorted splenocytes but not in CD3+ cells, CD14+ cells or neutrophils. Additionally, the coding sequence of CD19, the CR2 co-signaling molecule was found.
|
232 |
Modulation of Disabled-1 Activity by Alternative SplicingGao, Zhihua Unknown Date
No description available.
|
233 |
The effect of SRA intron-1 splicing on differential ratio of SRA-SRAP levels and on ER-mediated transcription in breast cancer cellsGuo, Jimin 26 September 2008 (has links)
The steroid receptor RNA activator gene (SRA1) generates two distinct entities. SRA
RNA coactivates several NRs whereas SRA protein (SRAP) is suspected to regulate
the activity of several transcription factors, including estrogen receptors (ER).
Splicing of SRA intron-1 is the major event defining SRAP coding frame. Fully
spliced, coding SRA and intron-1 retained, non-coding SRA coexist in breast cancer
cells. The relative proportion between the two types of SRA RNA maintains a balance
between two genetically linked entities, SRA and SRAP.
In this study, a minigene model was used to demonstrate that the primary sequence of
SRA exon-1-intron-1-exon-2 is sufficient for alternative splicing of SRA intron-1. In
addition, a modified oligoribonucleotidic construct promotes SRA intron-1 retention
in breast cancer cells. This oligoribonucleotide differentially alters estradiol-induced
transcription of ER regulated genes. Together, results presented herein demonstrate
that the SRA-SRAP balance, which can be artificially modified by targeting
alternative splicing of SRA intron-1, might be a new critical target to treat breast
cancer patients.
|
234 |
Regulation of alternative pre-mRNA splicing by depolarization/CaMKIVLiu, Guodong 29 June 2012 (has links)
Alternative pre-mRNA splicing is often controlled by cell signals (1-3). Membrane depolarization/calcium (Ca2+) signaling controls alternative splicing of a group of genes in neurons and endocrine cells (4-9), with important implications in memory formation or secretion of hormones and neurotransmitters (10-15). However, the underlying molecular basis remains largely unknown.
In rat GH3 pituitary cells, BK potassium channels control cellular electrical firing, which is critical for the release of growth hormone and prolactin. Inclusion of the STREX exon of the Slo1 gene encoding the channel α subunit is repressed by the Ca2+/calmodulin-dependent kinase IV (CaMKIV) upon depolarization (4). We isolated CaMKIV-responsive RNA elements (CaRREs) from a library of 13-nucleotide random sequences through in vivo selection in HEK293T cells. Most elements are CA-rich or A-rich, with the heterogeneous nuclear ribonucleoprotein (hnRNP) L as a binding factor. This is consistent with the finding that CA-rich elements and hnRNP L are targeted by CaMKIV in the regulation of splicing (16).
In further efforts to directly link the kinase with hnRNP L, we showed that hnRNP L is essential for the full repression of STREX by depolarization and that a highly conserved CaMKIV target serine (Ser513) of L is required. Ser513 phosphorylation enhanced L binding to the STREX CaRRE1, leading to reduced binding of the constitutive factor U2AF65 to the 3’ splice site of STREX. Mutation of Ser513 abolished both activities. Therefore, hnRNP L mediates the repression of STREX by depolarization through modulation of a key step in spliceosomal assembly.
We further identified hnRNP L, L-like (LL) and PTB as repressors of STREX and other depolarization-regulated exons with differential effects. Moreover, a full response of STREX to depolarization is mediated by combinations of hnRNP L and LL or PTB. Another depolarization-responsive exon, the exon 18 of the neuregulin 1 gene, is also controlled in a similar way, with the hnRNP L Ser513 required as well.
This work provides the first direct link between the Ca2+ signaling and a specific serine of a regulatory splicing factor. Elucidation of the underlying molecular mechanisms would likely help us understand the fine-tuning of hormone secretion and memory formation.
|
235 |
THE CONTRIBUTION OF TWO RELATED BBP-BINDING GYF PROTEINS, SMY2 AND SYH1, TO CELLULAR RNA ABUNDANCE AND GENOME STABILITYChen, Min 01 January 2013 (has links)
Nuclear precursor of mature messenger RNA (pre-mRNA) splicing is one of the most highly regulated processes in eukaryotic organisms. In addition to its role in the removal of constitutive or alternative introns present in the pre-mRNA, splicing is also highly integrated into other layers of gene expression. This study investigates the potential role of the nuclear branchpoint binding protein (BBP) outside of the pre-mRNA splicing cycle. More specifically, we were interested in the biological relevance of its association with two cytoplasmic proteins Smy2 and Syh1. Smy2 and Syh1 belong to the GYF family of poly-proline binding proteins, and their roles in cell biology have not been well elucidated.
Here we report that Smy2 and Syh1 act redundantly in: (i) limiting pre-mRNA accumulation when yeast cultures reach high cell density, potentially through promoting pre-mRNA decay in the cytoplasm; (ii) restricting Ty1 retrotransposition, apparently by limiting the Ty1 transcript abundance; (iii) limiting the accumulation of BBP-associated yet intronless TDA1 mRNA. With the presence of UACUAAC motif and BBP association as common features of these Smy2/Syh1 sensitive substrates, we tested if BBP interaction is required for Smy2/Syh1 function in RNA metabolism. Interestingly, we found that deletion of BBP C-terminal region (bbp∆C), which largely reduces or abolishes its association with Smy2, does not lead to similar phenotypes as observed in smy2∆ syh1∆ deletion mutant cells. In addition, mutagenesis of the TACTAAC BBP-binding site within the TDA1 coding region does not seem to affect TDA1 mRNA abundance or its sensitivity to the smy2∆ syh1∆ deletions. Therefore, we concluded that while the two BBP-binding proteins Smy2 and Syh1 impact the levels of certain cellular RNAs, this phenomenon is not strictly dependent upon BBP-Smy2 interaction and may be independent of BBP contribution. A model is proposed for Smy2 and Syh1 function in RNA metabolism based on our observations and interactions between these proteins with other factors implicated in RNA stability or translation.
|
236 |
Role of alternative splicing in the biological properties of the voltage-gated potassium channel Kv10.1Romaniello, Vincenzo 20 May 2014 (has links)
No description available.
|
237 |
The effect of SRA intron-1 splicing on differential ratio of SRA-SRAP levels and on ER-mediated transcription in breast cancer cellsGuo, Jimin 26 September 2008 (has links)
The steroid receptor RNA activator gene (SRA1) generates two distinct entities. SRA
RNA coactivates several NRs whereas SRA protein (SRAP) is suspected to regulate
the activity of several transcription factors, including estrogen receptors (ER).
Splicing of SRA intron-1 is the major event defining SRAP coding frame. Fully
spliced, coding SRA and intron-1 retained, non-coding SRA coexist in breast cancer
cells. The relative proportion between the two types of SRA RNA maintains a balance
between two genetically linked entities, SRA and SRAP.
In this study, a minigene model was used to demonstrate that the primary sequence of
SRA exon-1-intron-1-exon-2 is sufficient for alternative splicing of SRA intron-1. In
addition, a modified oligoribonucleotidic construct promotes SRA intron-1 retention
in breast cancer cells. This oligoribonucleotide differentially alters estradiol-induced
transcription of ER regulated genes. Together, results presented herein demonstrate
that the SRA-SRAP balance, which can be artificially modified by targeting
alternative splicing of SRA intron-1, might be a new critical target to treat breast
cancer patients.
|
238 |
Regulation of alternative pre-mRNA splicing by depolarization/CaMKIVLiu, Guodong 29 June 2012 (has links)
Alternative pre-mRNA splicing is often controlled by cell signals (1-3). Membrane depolarization/calcium (Ca2+) signaling controls alternative splicing of a group of genes in neurons and endocrine cells (4-9), with important implications in memory formation or secretion of hormones and neurotransmitters (10-15). However, the underlying molecular basis remains largely unknown.
In rat GH3 pituitary cells, BK potassium channels control cellular electrical firing, which is critical for the release of growth hormone and prolactin. Inclusion of the STREX exon of the Slo1 gene encoding the channel α subunit is repressed by the Ca2+/calmodulin-dependent kinase IV (CaMKIV) upon depolarization (4). We isolated CaMKIV-responsive RNA elements (CaRREs) from a library of 13-nucleotide random sequences through in vivo selection in HEK293T cells. Most elements are CA-rich or A-rich, with the heterogeneous nuclear ribonucleoprotein (hnRNP) L as a binding factor. This is consistent with the finding that CA-rich elements and hnRNP L are targeted by CaMKIV in the regulation of splicing (16).
In further efforts to directly link the kinase with hnRNP L, we showed that hnRNP L is essential for the full repression of STREX by depolarization and that a highly conserved CaMKIV target serine (Ser513) of L is required. Ser513 phosphorylation enhanced L binding to the STREX CaRRE1, leading to reduced binding of the constitutive factor U2AF65 to the 3’ splice site of STREX. Mutation of Ser513 abolished both activities. Therefore, hnRNP L mediates the repression of STREX by depolarization through modulation of a key step in spliceosomal assembly.
We further identified hnRNP L, L-like (LL) and PTB as repressors of STREX and other depolarization-regulated exons with differential effects. Moreover, a full response of STREX to depolarization is mediated by combinations of hnRNP L and LL or PTB. Another depolarization-responsive exon, the exon 18 of the neuregulin 1 gene, is also controlled in a similar way, with the hnRNP L Ser513 required as well.
This work provides the first direct link between the Ca2+ signaling and a specific serine of a regulatory splicing factor. Elucidation of the underlying molecular mechanisms would likely help us understand the fine-tuning of hormone secretion and memory formation.
|
239 |
Machine Learning in Computational Biology: Models of Alternative SplicingShai, Ofer 03 March 2010 (has links)
Alternative splicing, the process by which a single gene may code for similar but different proteins, is an important process in biology, linked to development, cellular differentiation, genetic diseases, and more. Genome-wide analysis of alternative splicing patterns and regulation has been recently made possible due to new high throughput techniques for monitoring gene expression and genomic sequencing. This thesis introduces two algorithms for alternative splicing analysis based on large microarray and genomic sequence data. The algorithms, based on generative probabilistic models that capture structure and patterns in the data, are used to study global properties of alternative splicing.
In the first part of the thesis, a microarray platform for monitoring alternative splicing is introduced. A spatial noise removal algorithm that removes artifacts and improves data fidelity is presented. The GenASAP algorithm (generative model for alternative splicing array platform) models the non-linear process in which targeted molecules bind to a microarray’s probes and is used to predict patterns of alternative splicing. Two versions of GenASAP have been developed. The first uses variational approximation to infer the relative amounts of the targeted molecules, while the second incorporates a more accurate noise and generative model and utilizes Markov chain Monte Carlo (MCMC) sampling.
GenASAP, the first method to provide quantitative predictions of alternative splicing patterns on large scale data sets, is shown to generate useful and precise predictions based on independent RT-PCR validation (a slow but more accurate approach to measuring cellular expression patterns).
In the second part of the thesis, the results obtained by GenASAP are analysed to
reveal jointly regulated genes. The sequences of the genes are examined for potential regulatory factors binding sites using a new motif finding algorithm designed for this purpose. The motif finding algorithm, called GenBITES (generative model for binding sites) uses a fully Bayesian generative model for sequences, and the MCMC approach used for inference in the model includes moves that can efficiently create or delete motifs, and extend or contract the width of existing motifs.
GenBITES has been applied to several synthetic and real data sets, and is shown
to be highly competitive at a task for which many algorithms already exist. Although
developed to analyze alternative splicing data, GenBITES outperforms most reported
results on a benchmark data set based on transcription data.
|
240 |
Functional conservation and RNA binding of the pre-mRNA splicing factor U2AF65 /Henscheid, Kristy L., January 2007 (has links)
Thesis (Ph. D.)--University of Oregon, 2007. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 129-141). Also available for download via the World Wide Web; free to University of Oregon users.
|
Page generated in 0.0232 seconds