• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 468
  • 428
  • 117
  • 53
  • 32
  • 24
  • 20
  • 14
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1395
  • 285
  • 174
  • 125
  • 102
  • 93
  • 91
  • 84
  • 83
  • 81
  • 78
  • 74
  • 73
  • 71
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Imaging Profilometry For In Situ Measurement of Plasma Spray Coating Thickness

Trail, Nicholas January 2015 (has links)
Thermal Barrier Coatings (TBCs), and plasma spray coatings in general, require critical control over the deposited thickness to achieve reliable coating performance. Currently, the plasma spray industry quantifies thickness by sampling the part before and after TBC deposition. Approximate thickness is thus inferred from previous runs. However, process variability can allow errors to propagate in this result that leads to wasted time and resources, and can ultimately lead to non-reliant coatings. To this end, an in situ optical fringe profilometer is developed that enables coating thickness measurements across a 2-dimensional surface. The initial profilometer concept is explored through requirements and trade studies, leading to a hardware and algorithm design family and prototype build to capture and compare real-world data to simulation and model predictions. This initial result shows a viable path-forward and the ability to achieve micrometer-scale depth resolution. Modifications and alterations to the in situ profilometer are then explored to improve the performance limits achievable. In specific, industrial spray coatings operate by dropping fine-grain media into a high pressure gas line aimed through a plasma torch to impart enough thermal and kinetic energy to stick to the part surface. This presents a challenging operational environment for an optical depth measurement sensor, working with a variable high-temperature blackbody stray light source; constant part rotation and plasma gun movement; and a non-isolated vibration environment. As such, the concept of the profilometer is further adapted specific to this end-purpose, by developing and reviewing both dual-fringe projection and plenoptic imaging. These techniques allow an improvement to both the system micro- and macroscopic depth retrieval limits, allowing a method to solve for an extended range of phase ambiguities and relax object focus requirements (respectively). The end result is a system concept and algorithm design that presents a feasible manner for automated in situ geometry and depth measurements in the plasma spray industry. The in situ fringe profilometer work described herein allows a flexible path to recover object depth information remotely, and is especially relevant for asymmetric and complex non-planar geometries, which are experiencing renewed interest with additive manufacturing processes and generally quite common to the thermal spray industry.
122

Spark ignition and flame propagation in sprays

Neophytou, Alexandre January 2011 (has links)
No description available.
123

噴霧燃焼の燃焼形態に与える液滴の大きさと数密度の影響に関する数値解析

YAMAMOTO, Kazuhiro, 山本, 和弘, 山下, 博史, 萩原, 康太, YAMASHITA, Hiroshi, HAGIHARA, Kouta 11 1900 (has links)
No description available.
124

Experimental Study on Multi-Hole Biodiesel Pulsed Spray in Cross Airflow

So, Queenie January 2013 (has links)
Many fuel spray characterization studies to date have been conducted in quiescent environments with single-hole fuel injectors. However, in actuality, multi-hole injectors spray into direct injection engine cylinders where significant air swirling and tumbling exist to promote fuel atomization and air-fuel mixing, which result in more efficient combustion. For this reason, researchers have begun developing correlations for fuel sprays where a jet of air acts perpendicularly to the fuel spray, also known as a cross airflow or crossflow, so as to more realistically predict fuel spray characteristics in direct injection engines. Accordingly, there is a need for a foundation of experimental data reflecting the specific conditions of fuel spray in cross airflow which can then be used for model validation and future engine design and development. In this study, fuel sprays are characterized with a commercial 8-hole fuel injector in a wind tunnel enclosure capable of cross airflows upwards of 200m/s. Particle image velocimetry was used to measure air velocities and capture pulsed spray events of biodiesel, diesel, and biodiesel-diesel blend fuels. Spray images were processed and analyzed in LaVision's DaVis and in MATLAB to calculate spray penetration length and axis deflection angle under varying cross airflow velocities, fuel injection pressures, and fuel types. Results show that strong cross airflows can decrease spray penetration by up to 44% and deflect the spray axis by up to 10.5° when compared to the same spray in a quiescent environment. Additional experiments reveal that biodiesel experiences slower spray progression when compared with diesel, resulting in shorter spray penetrations in the early phase of the spray development (up to 0.7ms after the start of injection, or ASOI). The angle between the fuel injector axis and the air jet axis plays an important role in determining the resultant spray characteristics. This angle should be considered in future correlations.
125

Alginate Microparticles Produced by Spray Drying for Oral Insulin Delivery

Bowey, KRISTEN 29 September 2009 (has links)
The aim of this study was to prepare biologically active insulin-loaded alginate microparticles by spray drying. Particles were produced from three alginate feed concentrations of 1, 1.5 and 2% w/v, with respective insulin loadings of 11.8, 7.8 and 5.8 mg/g of alginate and investigated in terms of mass yield, moisture content, particle size, morphology and encapsulation efficiency. The mass yield of the system was determined to be between 15 and 30%, with approximately 3% of the initial dry mass ending up in the exhaust filter. The moisture content of the particles was found to be between 4.9 and 11.1% and the mean size ranged between 1.2 and 1.6 μm. Particulate morphologies were observed to be mostly spherical with some ‘divots’ present on the surface. Lastly, the encapsulation efficiency determined by absorbance assay was approximately 40%. Particles produced from a 2% alginate feed were further assayed by determining the release of insulin in simulated gastrointestinal conditions and looking at the insulin and alginate distribution within spray dried particles. A steep release profile was observed in the first 120 min of the simulation in a gastric pH of 1.2 and a longer, more sustained release is observed in intestinal conditions, where an additional 20% of the total insulin in the particles is released over 600 min. Fluorescent labels revealed that insulin and alginate are concentrated towards the periphery of the particles. The residual bioactivity of insulin was assessed by an in vitro bioactivity assay, which was developed using Fast Activated Cell Based ELISA (FACE™) AKT kits specific for phosphylated AKT. The bioactivity of insulin in the particles after spray drying was determined to be 87.9 ± 15.3%. / Thesis (Master, Chemical Engineering) -- Queen's University, 2009-09-20 20:32:29.103
126

Wear behavior of flame sprayed nanostructured titania coatings

Pourjavad, Navid Unknown Date
No description available.
127

SEDIMENTARY CHARACTERISTICS OF THE SPRAY RIVER GROUP OF WEST-CENTRAL ALBERTA

Nordheimer, David Campbell Unknown Date
No description available.
128

Atomization-based Spray Coating for Improved 3D Scanning

Valinasab, Behzad 27 May 2014 (has links)
Obtaining geometrical and physical information of industrially manufactured products or manually created artifacts has increased dramatically in the past few years. These data are usually generated by means of specific devices which are called 3D scanners. 3D scanners generate virtual 3D models of objects which in different fields can be used for various applications such as reverse engineering and quality control in manufacturing industry or data archiving of valuable unique objects of cultural heritage. There are basically two types of 3D scanning depending on whether contact or non-contact techniques are used. Non-contact scanners have been developed to overcome the problems of contacts. Optical methods are the most developed and major category of non-contact scanning techniques. Remarkable progress in computer science has been the key element of optical 3D scanning development. Apart from this improvement, optical scanners are affected by surface characteristics of the target object, such as transparency and reflectivity, since optical scanners work based on reflected light from the object surface. For solving this problem, in most cases the object is sprayed with an aerosol spray to change its characteristics temporarily, e.g. from shiny to dull or transparent to opaque. It is important to apply coating of minimum possible thickness to keep the object geometry unchanged. To study this issue, an atomization-based spray coating system was developed in this thesis research and used in sets of experiments to evaluate the effects of thin layer coating on 3D scanning results. In this thesis, firstly the spray coating system structure and coating specifications will be offered. Then, for appraising the efficiency of atomization-based spray coating in 3D scanning process, some examples are presented. These examples are based on some actual parts from different industries which were used as target objects to be coated and scanned. / Graduate / 0548 / behzadv@uvic.ca
129

Atomization-based Spray Coating for Improved 3D Scanning

Valinasab, Behzad 27 May 2014 (has links)
Obtaining geometrical and physical information of industrially manufactured products or manually created artifacts has increased dramatically in the past few years. These data are usually generated by means of specific devices which are called 3D scanners. 3D scanners generate virtual 3D models of objects which in different fields can be used for various applications such as reverse engineering and quality control in manufacturing industry or data archiving of valuable unique objects of cultural heritage. There are basically two types of 3D scanning depending on whether contact or non-contact techniques are used. Non-contact scanners have been developed to overcome the problems of contacts. Optical methods are the most developed and major category of non-contact scanning techniques. Remarkable progress in computer science has been the key element of optical 3D scanning development. Apart from this improvement, optical scanners are affected by surface characteristics of the target object, such as transparency and reflectivity, since optical scanners work based on reflected light from the object surface. For solving this problem, in most cases the object is sprayed with an aerosol spray to change its characteristics temporarily, e.g. from shiny to dull or transparent to opaque. It is important to apply coating of minimum possible thickness to keep the object geometry unchanged. To study this issue, an atomization-based spray coating system was developed in this thesis research and used in sets of experiments to evaluate the effects of thin layer coating on 3D scanning results. In this thesis, firstly the spray coating system structure and coating specifications will be offered. Then, for appraising the efficiency of atomization-based spray coating in 3D scanning process, some examples are presented. These examples are based on some actual parts from different industries which were used as target objects to be coated and scanned. / Graduate / 0548 / behzadv@uvic.ca
130

Analysis of liquid sheet breakup and characterisation of plane prefilming and nonprefilming airblast atomisers

Bhayaraju, Umesh Chandra. Unknown Date (has links) (PDF)
Darmstadt, Techn. University, Diss., 2007.

Page generated in 0.0257 seconds