11 |
The Adenovirus L4-33K Protein : A Key Regulator of Virus-specific Alternative SplicingTörmänen Persson, Heidi January 2011 (has links)
Adenoviruses have been extensively studied in the field of gene regulation, since their genes are subjected to a tightly controlled temporal expression during the virus lifetime. The early-to-late shift in adenoviral gene expression distinguishes two completely different programs in gene expression. The adenoviral L4-33K protein, which is the subject of this thesis, was previously implicated to be a key player in the transition from the early to the late phase of infection. Here we show that L4-33K activates late gene expression by functioning as a virus-encoded alternative RNA splicing factor activating splicing of transcripts containing weak 3’ splice sites; a feature common to the viral genes expressed at late times of infection. The splicing enhancer activity of L4-33K was mapped to a tiny arginine/serine (RS) repeat in the carboxyl-terminal domain of the protein. Also, the subcellular distribution to the nucleus with enrichment in the nuclear membrane and subnuclear redistribution to viral replication centers during a lytic infection was observed to depend on this motif. RS repeats are common features for the cellular splicing factors serine/arginine-rich (SR) proteins, which in turn are regulated by reversible phosphorylation. We further show that L4-33K is phosphorylated by two cellular protein kinases, the double-stranded DNA-dependent protein kinase (DNA-PK) and protein kinase A (PKA) in vitro. Interestingly, DNA-PK and PKA have opposite effects on the control of the temporally regulated L1 alternative RNA splicing. DNA-PK functions as an inhibitor of the late specific L1-IIIa pre-mRNA splicing whereas PKA functions as an activator of L1-IIIa pre-mRNA splicing. In summary, this thesis describes L4-33K as an SR protein related viral alternative splicing factor. A tiny RS repeat conveys splicing enhancer activity as well as redistribution of L4-33K to replication centers. Finally, DNA-PK and PKA that phosphorylates L4-33K are suggested to be novel regulatory factors controlling adenovirus alternative splicing.
|
12 |
Comparative analysis of splicing in eukaryotesPlass Pórtulas, Mireya 12 July 2011 (has links)
L’splicing és el mecanisme pel qual els introns són eliminats del pre-mRNA per generar un trànscrit madur. Aquest procés és dut a terme per un complex macromolecular anomenat spliceosoma i requereix el reconeixement dels senyals d’splicing al pre-mRNA. Aquests senyals no són sempre identificats correctament, el que permet la producció de trànscrits diferents a partir d’un únic pre-mRNA mitjançant un procés anomenat splicing alternatiu. Aquest procés pot ser regulat mitjançant factors proteics específics o per altres mecanismes que alteren el reconeixement dels senyals d’splicing com l’estructura secundària adoptada pels pre-mRNAs. En aquesta tesi hem investigat els mecanismes de regulació de l’splicing en eucariotes mitjançant tècniques computacionals. També hem estudiat la relació existent entre les proteïnes que intervenen en la regulació de l’splicing i els senyals d’splicing, i com han coevolucionat en diferents espècies. Finalment, i tenint en compte les possibilitats que l’splicing alternatiu ofereix des del punt de vista evolutiu, també hem analitzat l’impacte de l’splicing alternatiu en l’evolució gènica. / Splicing is the mechanism by which introns are removed from the pre-mRNA to
create a mature transcript. This process is performed by a macromolecular complex,
the spliceosome, and involves the recognition of the splicing signals in the premRNA.
These signals are not always perfectly recognized, which allows the
production of different mature transcripts from a single pre-mRNA through a
process called alternative splicing. This process can be regulated by specific protein
factors or by other mechanisms that affect the recognition of the splicing signals,
such as the secondary structure adopted by the pre-mRNA. In this thesis we have
investigated the mechanisms of splicing regulation in eukaryotes using
computational approaches. Moreover, we have also studied the relationship that
exists between protein factors involved in splicing regulation and splicing signals,
and how they have co-evolved across species. Finally, and considering the
possibilities that alternative splicing can offer from the evolutionary point of view, he
have also analyzed the impact of alternative splicing in gene evolution.
|
13 |
Functional Analyses of Human DDX41 and LUC7-like Proteins Involved in Splicing Regulation and Myeloid NeoplasmsDaniels, Noah James 23 May 2022 (has links)
No description available.
|
Page generated in 0.0432 seconds