201 |
The environmental dependence of galaxy evolutionBurton, Christopher Steven January 2013 (has links)
Observations of galaxy environments have revealed numerous correlations associated with their intrinsic properties. It is therefore clear that if we are to understand the processes by which galaxies form and evolve, we have to consider the role of their immediate environment and how these trends change across cosmic time. In this thesis, I investigate the relationship between the environmental densities of galaxies and their associated properties by developing and implementing a novel approach to measuring galaxy environments on individual galaxy scales with Voronoi tessellations. Using optical spectroscopy and photometry from GAMA and SDSS, with 250μm far-infrared observations from the Herschel-ATLAS SDP and Phase-One fields, the environmental and star formation properties of far-infrared detected and non–far-infrared detected galaxies are compared out to z ∼ 0.5. Applying statistical analyses to colour, magnitude and redshift-matched samples, I show there to be significant differences between the normalised density distributions of the optical and far-infrared selected samples, at the 3.5σ level for the SDP increasing to > 5σ when combined with the Phase-One data. This is such that infrared emission (a tracer of star formation activity) favours underdense regions, in agreement with previous studies that have proposed such a correlation. I then apply my method to synthetic light cones generated from semianalytic models (SAMs), finding that over the whole redshift distribution the same correlations between star-formation rate and environmental density are found. However, as the SAMs restrict the role of ram-pressure stripping, the fact that we find the same qualitative results may preclude ram-pressure as a key mechanism in truncating star formation. I also find significant correlations between isothermal dust temperature and environment, such that the coldest sources reside in the densest regions at the 3.9σ level, indicating that the observed far-infrared emission in these densest regions is the product of ISM heating by the older stellar populations. I then extend my analysis to a deeper sample of galaxies out to z ∼ 2.2, combining near-infrared and optical photometry from the VIDEO and CFHTLS-D1 observations, cross-matched in colour, magnitude and redshift against 1.4 GHz VLA radio observations. Across the entire radio sample, galaxies with radio detected emission are found to reside in more overdense environments at a 4.0σ significance level. I then divide my radio sample to investigate environmental dependence on both radio detected star-forming galaxies and radio detected AGN individually, based upon a luminosity selection defined as L = 1023 W Hz−1. The same trends with environment are shown by my Radio-AGN sample (L > 1023 W Hz−1) which favour overdense regions at the 4.5σ level, suggestive of the interaction processes (i.e. major mergers) that are believed to trigger accretion, in agreement with earlier work that has suggested such a relationship. At lower radio luminosities, my Radio-SF sample (L < 1023 W Hz−1) also display a significant trend towards overdense regions in comparison to my nonradio detected sample, at the less significant level of 2.7σ. This is suggestive of the low overall bolometric luminosity of radio emission in star forming galaxies, leading to only the brightest radio emitting star forming galaxies being observed and a bias towards overdense regions. This is in addition to the fact that the luminosity selection used to separate AGN from star forming galaxies is not a perfect selection and open to AGN contamination in the low-luminosity sample. I conclude that the next generation of deep radio surveys, which are expected to reach many orders of magnitude deeper than current observations, will remove radio-loud AGN contamination and allow for the detection of low-luminosity star forming galaxies via radio emission out to high redshifts. This work has allowed for the environments of galaxies to be probed on smallerscales and across both wider and deeper samples than previous studies. With significant environmental correlations being returned, this indicates that the established processes responsible for such trends must have influence on the most local of scales.
|
202 |
The integration of two stand-alone codes to simulate fluid-structure interaction in breakwaters / Jan Hendrik GroblerGrobler, Jan Hendrik January 2013 (has links)
Harbours play a vital role in the economies of most countries since a significant amount of
international trade is conducted through them. Ships rely on harbours for the safe loading and
unloading of cargo and the harbour infrastructure relies on breakwaters for protection. As a result,
the design and analysis of breakwaters receives keen interest from the engineering community.
Coastal engineers need an easy-to-use tool that can model the way in which waves interact with large
numbers of interlocking armour units. Although the study of fluid–structure interaction generates a
lot of research activity, none of the reviewed literature describes a suitable method of analysis. The
goal of the research was to develop a simulation algorithm that meets all the criteria by allowing
CFD software and physics middleware to work in unison.
The proposed simulation algorithm used Linux “shell scripts” to coordinate the actions of
commercial CFD software (Star-CCM+) and freely available physics middleware (PhysX). The CFD
software modelled the two-phase fluid and provided force and moment data to the physics
middleware so that the movement of the armour units could be determined.
The simulation algorithm was verified numerically and experimentally. The numerical verification
exercise was of limited value due to unresolved issues with the CFD software chosen for the
analysis, but it was shown that PhysX responds appropriately given the correct force data as input.
Experiments were conducted in a hydraulics laboratory to study the interaction of a solitary wave
and cubes stacked on a platform. Fiducial markers were used to track the movement of the cubes.
The phenomenon of interest was the transfer of momentum from the wave to the rigid bodies, and
the results confirmed that the effect was captured adequately. The study concludes with suggestions
for further study. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
|
203 |
The integration of two stand-alone codes to simulate fluid-structure interaction in breakwaters / Jan Hendrik GroblerGrobler, Jan Hendrik January 2013 (has links)
Harbours play a vital role in the economies of most countries since a significant amount of
international trade is conducted through them. Ships rely on harbours for the safe loading and
unloading of cargo and the harbour infrastructure relies on breakwaters for protection. As a result,
the design and analysis of breakwaters receives keen interest from the engineering community.
Coastal engineers need an easy-to-use tool that can model the way in which waves interact with large
numbers of interlocking armour units. Although the study of fluid–structure interaction generates a
lot of research activity, none of the reviewed literature describes a suitable method of analysis. The
goal of the research was to develop a simulation algorithm that meets all the criteria by allowing
CFD software and physics middleware to work in unison.
The proposed simulation algorithm used Linux “shell scripts” to coordinate the actions of
commercial CFD software (Star-CCM+) and freely available physics middleware (PhysX). The CFD
software modelled the two-phase fluid and provided force and moment data to the physics
middleware so that the movement of the armour units could be determined.
The simulation algorithm was verified numerically and experimentally. The numerical verification
exercise was of limited value due to unresolved issues with the CFD software chosen for the
analysis, but it was shown that PhysX responds appropriately given the correct force data as input.
Experiments were conducted in a hydraulics laboratory to study the interaction of a solitary wave
and cubes stacked on a platform. Fiducial markers were used to track the movement of the cubes.
The phenomenon of interest was the transfer of momentum from the wave to the rigid bodies, and
the results confirmed that the effect was captured adequately. The study concludes with suggestions
for further study. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
|
204 |
Ferromagnetic phase transitions in neutron starsDiener, Jacobus Petrus Willem 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: We consider the ferromagnetic phase in pure neutron matter as well as charge neutral, betaequilibrated
nuclear matter. We employ Quantum Hadrodynamics, a relativistic field theory
description of nuclear matter with meson degrees of freedom, and include couplings between the
baryon (proton and neutron) magnetic dipole moment as well as between their charge and the
magnetic field in the Lagrangian density describing such a system. We vary the strength of the
baryon magnetic dipole moment till a non-zero value of the magnetic field, for which the total
energy density of the magnetised system is at a minimum, is found. The system is then assumed
to be in the ferromagnetic state.
The ferromagnetic equation of state is employed to study matter in the neutron star interior.
We find that as the density increases the ferromagnetic field does not increase continuously, but
exhibit sudden rapid increases. These sudden increases in the magnetic field correspond to shifts
between different configurations of the charged particle’s Landau levels and can have significant
observational consequences for neutron stars. We also found that although the ferromagnetic
phase softens the neutron star equation of state it does not significantly alter the star’s massradius
relationship.
The properties of magnetised symmetric nuclear matter were also studied. We confirm that
magnetised matter tends to be more proton-rich but become more weakly bound for stronger
magnetic fields. We show that the behaviour of the compressibility of nuclear matter is influenced
by the Landau quantisation and tends to have an oscillatory character as it increases with
the magnetic field. The symmetry energy also exhibits similar behaviour. / AFRIKAANSE OPSOMMING: In hierdie studie het ons die ferromagnetiese fase in suiwer neutronmaterie, sowel as in ladingsneutrale,
beta-ge¨ekwilibreerde neutronstermaterie, ondersoek. Vir die doeleindes het ons die
Kwantum Hadrodinamika-model van kernmaterie gebruik. Dit is ’n relatiwistiese, veldteoretiese
model wat mesone inspan om die interaksies tussen die protone en neutrone te bemiddel. Om
die impak van die magneetveld te bestudeer, sluit ons ’n koppeling tussen die barioonlading en
die magneetveld, asook barioondipoolmoment en die magneetveld, in by die Lagrange digtheid
wat ons sisteem beskryf. Om die ferromagnetiese fase te ondersoek, varieer ons die sterkte van
die barioondipoolmoment om ’n nie-nul waarde van die magneetveld wat energie digtheid sal
minimeer te vind.
Die ferromagnetiese toestandsvergelyking word toegepas op materie aan die binnekant van die
neutronster en die impak hiervan op die waarneembare eienskappe van die ster word ondersoek.
Ons vind dat die ferromagnetiese magneetveld nie kontinu toeneem soos die digtheid verhoog
nie. Die skielike toenames in die magneetveld is die gevolg van die sisteem wat die konfigurasie
van die gelaaide deeltjies se Landau-vlakke skielik verander en dit kan beduidende waarneembare
gevolge vir die ster inhou. Ons vind ook dat die ferromagnetiese fase die toestandsvergelyking
versag, maar dat die versagting die massa-radius verhouding van die ster nie grootliks beïnvloed
nie.
Die eienskappe van gemagnetiseerde kernmaterie word ook ondersoek. Ons bevestig dat gemagnetiseerde
materie meer proton-ryk, maar minder sterk gebind word. Ons wys dat die saampersbaarheid
van kernmaterie deur die teenwoordigheid van Landau-vlakke beïnvloed word en
ossilerend saam met die magneetveld toeneem. Die simmetrie-energie manifesteer ook soortgelyke
gedrag.
|
205 |
The impact of radio-AGN on star formation across cosmic timeVirdee, Jasmeer January 2014 (has links)
This thesis presents a detailed study of the impact of radio-AGN on star formation and the interstellar medium (ISM) of galaxies across cosmic time. To do this, this thesis uses far-IR/sub-mm data from the Herschel Space Observatory. I create a well-selected sample of 1599 radio sources using the NRAO VLA Sky Survey (NVSS) and Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) data in combination with the UKIRT Infrared Deep Sky Survey - Large Area Survey (UKIDSS - LAS) data. I find that the far-IR luminosities and dust temperatures of radio galaxies are lower in comparison to those of non-radio-detected galaxies. This luminosity deficit grows with increasing stellar mass. I argue that the reasons for these differences is probably due to indirect radio-AGN feedback, i.e. radio jets mechanically heat the halo-environment, preventing external sources of cold gas from entering the host and forming stars. The far-IR luminosity and dust temperature is found to decrease as a function of radio source size. I find the most likely explanation for this is jet-induced star formation while the jets are confined to the ISM. Finally, a method for identifying reliable high-z, star-bursting radio sources in the H-ATLAS is described with which statistically significant studies of radio-jet induced star formation may be undertaken.
|
206 |
Adaptive Critic Design Techniques for Mobile Transmitter Path PlanningRivera, Grant 10 1900 (has links)
ITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevada / In geometrically complex indoor industrial environments, such as factories, health care facilities, or offices, it can be challenging to determine where each telemetry receiver needs to be located to collect data from one or more mobile transmitters. Accurately estimating the areas that each transmitter frequently travels, rarely travels, and quickly travels through, helps to simplify the telemetry system planning problem and establishes which areas may be acceptable to provide marginal coverage. This paper discusses how using A* (A-Star) for transmitter path planning can assist in the telemetry system planning problem.
|
207 |
DETERMINING PHYSICAL CONDITIONS IN STAR FORMING REGIONSAbel, Nicholas Paul 01 January 2005 (has links)
This dissertation is a study of the physical conditions in star-forming regions, and combines observational data and theoretical calculations. We studied the physical conditions of Orions Veil, which is an absorbing screen that lies along the line of sight to the Orion H II region. We computed photoionization models of the Veil. We combined calculations with UV, radio, and optical spectra that resolve the Veil into two velocity components. We derive many physical parameters for each component seen in 21 cm absorption. We find the magnetic field energy dominates turbulent and thermal energies in one component while the other component is close to equipartition between turbulent and magnetic energies. We observe H2 absorption for highly excited levels. We find that the low ratio of H2/H0 in the Veil is due to the high UV flux incident upon the Veil. We detect blueshifted S+2 and P+2 ions which must arise from ionized gas between the neutral portions of the Veil and the Trapezium and shields the Veil from ionizing radiation. We determine the ionized and neutral layers of the Veil will collide in less than 85,000 years. The second part of this dissertation involved self-consistently calculating the thermal and chemical structure of an H II region and photodissociation region (PDR) that are in pressure equilibrium. This differs from previous work, which used separate calculations for each gas phase. Our calculations span a wide range of initial conditions. We describe improvements made to the spectral synthesis code Cloudy which made these calculations possible. These include the addition of a molecular network with ~1000 reactions involving 68 molecules and improved treatment of the grain physics. Archival data are used to derive important physical characteristics of observed H II regions and PDRs. These include stellar temperatures, electron densities, ionization parameters, UV flux, and PDR density. The contribution of the H II region to PDR emission line diagnostics is also calculated. Finally, these calculations are used to derive emission line ratios than can tell us the equation of state in star-forming regions.
|
208 |
Star formation in the first galaxiesSafranek-Shrader, Chalence Timber 16 September 2014 (has links)
The ignition of the first sources of light marked the end of the cosmic dark ages, an era when the Universe transitioned from the relatively simple conditions following the Big Bang to the complex tapestry of dark matter, baryons, and pervasive cosmic radiation fields we see today. To better understand this uncharted cosmic epoch, we primarily utilize hydrodynamical, N-body simulations to model the assembly of the first galaxies at redshifts greater than ten and the stars that form within them. These simulations begin from cosmological initial conditions, employ a robust, non-equilibrium chemo-thermodynamic model, and take advantage of adaptive-grid-refinement to probe the multi-scale, complex process of star formation from ab initio principles. We explore the consequences that metal enrichment has on the process of star formation, confirming the presence of a critical metallicity for low-mass star formation. To assess the observational prospects of these primeval stellar populations with next-generation telescopes, like the James Webb Space Telescope, we constrain the star formation efficiency of both metal-enriched and metal-free star formation in a typical first galaxy. We also resolve the formation of individual metal-enriched stars in simulations that ultimately began from cosmological scales, allowing meaningful comparisons between our simulations and the recently discovered ultra-faint dwarf satellite galaxies, the suspected analogs of the first galaxies in the local Universe. / text
|
209 |
Study of galactic clumps with millimeter / submillimeter continuum and molecular emission : early stages of massive star formationMerello Ferrada, Manuel Antonio 23 October 2014 (has links)
Massive stars play a key role in the evolution of the Galaxy; hence they are important objects of study in astrophysics. Although they are rare compared to low mass stars, they are the principal source of heavy elements and UV radiation, affecting the process of formation of stars and planets, and the physical, chemical, and morphological structure of galaxies. Star clusters form in dense "clumps" (~few parsecs in size) within giant molecular clouds, while individual stars form in cores (subparsec scale). An important step in the observational study of massive star formation is the identification and characterization of clumps. More detailed studies can then show how these clumps fragment into cores. Studies of clumps in our Galaxy will provide fundamental guidelines for the analysis of other galaxies, where individual clumps and cores cannot be resolved, and provide a catalog of interesting sources for observations of the Milky Way with a new generation of instruments, such as the Atacama Large Millimeter/Submillimeter Array. Large-scale blind surveys of the Galactic plane at millimeter and submillimeter wavelengths have recently been completed, allowing us to identify star forming clumps and improve our understanding of the early stages of massive stars. One of these studies, the Bolocam Galactic Plane Survey (BGPS), mapped the continuum emission at 1.1 mm over a large region of the northern Galactic plane at a resolution of 33'', identifying 8559 compact sources throughout the Galaxy. In this dissertation, I present observations of a sample of sources from the BGPS catalog, obtained with the Submillimeter High Angular Resolution Camera II (SHARC-II). I present in this work 107 continuum emission maps at 350 microns at high angular resolution (8.5'') toward clump-like sources and construct a catalog of BGPS substructures. I estimate clump properties such as temperatures and multiplicity of substructures, and compare my results with 350 microns continuum maps from the Hi-GAL survey. I also present a detailed analysis, using molecular line and dust continuum observations, of the region G331.5-0.1, one of the most luminous regions of massive star formation in the Milky Way, located at the tangent region of the Norma spiral arm. Molecular line and millimeter continuum emission maps reveal the presence of six compact and luminous molecular clumps, with physical properties consistent with values found toward other massive star forming sources. This work includes the discovery of one of the most energetic and luminous molecular outflows known in the Galaxy, G331.512-0.103. For this high-speed outflow, I present ALMA observations that reveal a very compact, extremely young bipolar outflow and a more symmetric outflowing shocked shell surrounding a very small region of ionized gas. The source is one of the youngest examples of massive molecular outflows associated with the formation of a high-mass star. / text
|
210 |
Space astrometry of unresolved binaries: From Hipparcos to Gaia/Astrometrie spatiale des binaires non-resolues: D'Hipparcos a GaiaPourbaix, Dimitri 13 September 2007 (has links)
Building upon its success with the Hipparcos space astrometry mission launched in 1989, the European Space Agency has agreed to fund the construction of its successor, Gaia, and its launch in 2011. Despite the similarities between the two missions, Gaia will be orders of magnitude more powerful, more sensitive, but also more complex in terms of data processing. Growing from 120,000 stars with Hipparcos to about 120,000E4 stars with Gaia does not simply mean pushing the computing resources to their limits (1 second of processing per star yields 38 years for the whole Gaia-sky). It also means facing situations that did not occur with Hipparcos either by luck or because those cases were carefully removed from the Hipparcos Input Catalogue.
This manuscript illustrates how some chunks of the foreseen Gaia data reduction pipeline can be trained and assessed using the Hipparcos observations. This is especially true for unresolved binaries because they pop up so far down in the Gaia pipeline that, by the time they get there, there is essentially no difference between Hipparcos and Gaia data. Only the number of such binaries is different, going from two thousand to ten million.
Although the computing time clearly becomes an issue, one cannot sacrifice the robustness and correctness of the reduction pipeline for the sake of speed. However, owing to the requirement that everything must be Gaia-based (no help from ground-based results), the very robustness of the reduction has to be assessed as well. For instance, the underlying assumptions of some statistical tests used to assess the quality of the fits used in the Hipparcos pipeline might no longer hold with Gaia. That may not affect the fit itself but rather the quality indicators usually accompanying those fits. For the final catalogue to be a success, these issues must be addressed as soon as possible.
|
Page generated in 0.1096 seconds