• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ORAL ADMINISTRATION OF EPIGALLOCATECHIN-3-GALLATE (EGCG) IS A POTENTIAL THERAPEUTIC FOR CISPLATIN-INDUCED HEARING LOSS

Borse, Vikrant 01 December 2017 (has links)
Cisplatin is a commonly used chemotherapeutic agent for multiple solid tumors. However, cisplatin-induced neurotoxicity, nephrotoxicity and hearing loss hamper its use in clinical setting. Although, neurotoxicity and nephrotoxicity can be prevented, there is no cure for cisplatin-induced hearing loss. Cisplatin-induced hearing loss results from damage to outer hair cells (OHCs) in basal turn of the cochlea, to spiral ganglion neurons (SGN), stria vascularis (SV) and fibrocytes of spiral ligament (SL). At the cellular level, cisplatin produces profound increases in reactive oxygen species (ROS) that stimulate cell signaling pathways leading to cochlear inflammation, apoptosis and permanent hearing loss. Thus, potential otoprotective drugs should target oxidative stress and inflammatory mechanisms without interfering with cisplatin chemotherapeutic efficacy. In this study, I characterized the otoprotective actions of the green tea extract, epigallocatechin 3-gallate (EGCG), which possesses anti-oxidant, anti-inflammatory and anti-tumor properties. Oral administration of EGCG to male Wistar rats reduced cisplatin-induced hearing loss, assessed by auditory brainstem responses. These changes were associated with a reduction in cisplatin-induced loss of OHCs primarily in the basal region of the cochlea, along with reduced oxidative stress, inflammatory and apoptotic markers. In addition, EGCG protected against cisplatin-induced decrease in inner hair cell (IHCs) ribbon synapses, labeled with CtBP2. EGCG also protected against cisplatin-induced loss of Na+/K+ ATPase α1 immunoreactivity in the stria vascularis and spiral ligament. In vitro studies using University Bristol/Organ of Corti-1 (UB/OC-1) cells showed that EGCG reduced cisplatin-induced ROS generation and the activation of ERK and STAT1, while it preserved the activity of STAT3 and levels of Bcl-xL. Moreover, EGCG suppressed oxidative stress, inflammatory and apoptotic markers in cisplatin-treated UB/OC-1 cells. Co-administration of EGCG did not alter cisplatin-induced apoptosis of human-derived head and neck cancer cells, ovarian cancer cells or colon cancer cells. In studies using a xenograft model of head and neck cancer in severe combined immunodeficient (SCID) mice, I showed that EGCG did not interfere with cisplatin chemotherapeutic efficacy. These data suggest that EGCG is a potential otoprotective agent for treating cisplatin-induced hearing loss without compromising its chemotherapeutic efficacy.
2

STAT PROTEIN REGULATION OF FOXP3 EXPRESSION AND INFLAMMATORY CYTOKINE PRODUCTION IN T HELPER CELL SUBSETS

O'Malley, John Thomas 19 March 2009 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The differentiation of naïve CD4+ T cells into subsets of T helper cells (Th) is an essential process that impacts host defense and the pathogenesis of immunemediated diseases. Signal transducers and activators of transcription (STAT) proteins, activated downstream of instructive cytokines, dictate and perpetuate the lineage decision of Th cells through both positive and negative effects. This is accomplished by regulating transcription factors, surface receptors and promoting epigenetic changes in gene expression through chromatin remodeling. Transforming growth factor-β1 (TGF-β1) can induce Foxp3 in developing Th cells and these Foxp3-expressing adaptive T regulatory cells (aTregs) are able to suppress inflammation in vitro and in vivo. To define the mechanism by which STAT proteins regulate Th cell pro- and anti-inflammatory phenotypes, we examined T cells deficient in Stat3, Stat4, and Stat6 as well as T cells expressing two STAT4 isoforms after being cultured in the presence or absence of TGF-β1 and cytokines known to be instructive in Th cell development. The negative effects of STAT proteins are demonstrated by our results indicating STAT3, STAT4 and STAT6 proteins activated downstream of the instructive cytokines IL- 6, IL-12 and IL-4, respectively, negatively regulate the development of TGF-β induced Foxp3 and aTreg development. STAT3, STAT4, and STAT6 utilize a vi Mark H. Kaplan, Ph.D., Chair common mechanism to inhibit aTreg generation by inhibiting STAT5, a positive regulator of Foxp3 expression, from binding to the Foxp3 gene. STAT proteins positively effecting inflammatory immunity are demonstrated by our analysis of STAT4 isoforms and their ability to regulate the production of proinflammatory cytokines downstream of IL-12. STAT4β, a STAT4 splice isoform that lacks a Cterminal domain, and STAT4α, a full-length isoform are both capable of mediating inflammatory cell development. However, STAT4β promotes greater inflammation in vivo than STAT4α independent of its ability to repress Foxp3. Instead, the inflammation correlates with STAT4 isoform-dependent expression of inflammatory cytokines. Thus, cytokine-stimulated STAT proteins orchestrate T helper cell pro- and anti-inflammatory cell phenotypes.

Page generated in 0.1981 seconds