Spelling suggestions: "subject:"stat4"" "subject:"pstat4""
1 |
Acquired STAT4 deficiency as a consequence of cancer chemotherapyLupov, Ivan 16 August 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Signal Transducer and Activator of Transcription 4 (STAT4) is an important transcription factor activated by IL-12 signaling. Activated STAT4 is essential for Th1 cell differentiation, a process characterized by increased potential for interferon (IFN)-γ production. Defective IFN-γ production due to STAT4 deficiency occurs after autologous stem cell transplantation for lymphoma.
We have investigated the mechanisms of post-transplant STAT4 deficiency. The tumor-bearing state is ruled out to be the cause because STAT4 levels were not significantly different in peripheral blood mononuclear cells (PBMCs) obtained from lymphoma patients prior to treatment and healthy control subjects. The magnitude of the decrease in STAT4 levels corresponded with increasing intensity of chemotherapeutic treatment in vivo. Furthermore, treatment of normal PBMC cultures or a natural killer (NK) cell line with chemotherapy drugs in vitro also resulted in reduced STAT4 protein and reduced IL-12-induced IFN-γ production. Chemotherapy drugs are shown to have no impact on the stability of STAT4 mRNA, while steady-state levels of STAT4 transcripts are decreased in lymphoma patients.
Our findings demonstrated that chemotherapeutic drugs up-regulate the ubiquitination rates of the STAT4 protein, which in turn promotes its degradation via the proteasome-mediated pathway. Treatment with the proteasome inhibitor bortezomib largely reversed the chemotherapy-induced STAT4 deficiency. Thus, acquired STAT4 deficiency in lymphoma patients is a consequence of treatment with chemotherapy. These results have important implications for design of optimal immunotherapy for lymphoma.
|
2 |
Examining Novel Aspects of T-cell Priming and Lung Resident T-cell Function to Improve Vaccine Induced Protection Against Influenza A VirusFinn, Caroline M 01 January 2023 (has links) (PDF)
How CD4 T cells protect against influenza A virus is poorly understood. Here, we address two central questions to better understand how CD4 T cells contribute to immunity during primary and secondary infection. First, we investigate the CD4 T cell-intrinsic requirements for three major transcription factors associated with an antiviral T cell phenotype (termed ‘Th1'): STAT1, STAT4, and T-bet, in directing CD4 T cell responses. We show that STAT4-deficiency does not affect the phenotype or function of wildtype or T-bet-/- CD4 T cells while STAT1-/- cells are virtually undetectable in infected host mice. Depleting NK cells rescues the STAT1-/- cells that phenocopy the compromised Th1 identity of T-bet-/- cells. Finally, we show that cytokine-mediated STAT4 activation enhances infection-induced Th1-polarization and that engaging STAT1 and STAT4 during priming dramatically improves CD4 T cell antiviral capacity. These results are relevant to T cell-based vaccine strategies aiming to promote the most efficient anti-viral T cell responses. Second, we asked the extent to which the recall of influenza-specific lung-resident memory CD4 T cells (TRM) impact the generation of new primary anti-viral T cells. TRM rapidly induce local inflammatory responses that control infection before protective T cells activated in secondary lymphoid organs reach sites of infection. Whether antigen-sensing by TRM can impact T cell priming in secondary lymphoid organs is unclear. We show that activation of influenza-primed lung TRM by antigen delivered into the airways enhances the number and activation status of antigen-bearing dendritic cells in draining lymph nodes. This accelerates the priming of naïve T cells and enhances their recruitment to the lung. Importantly, this TRM-dependent circuit enables productive T cell responses even against levels of airways antigen too low to otherwise activate naïve T cells. This adjuvant-like impact of lung TRM highlights a novel integration of local and regional T cell immunity.
|
3 |
STAT PROTEIN REGULATION OF FOXP3 EXPRESSION AND INFLAMMATORY CYTOKINE PRODUCTION IN T HELPER CELL SUBSETSO'Malley, John Thomas 19 March 2009 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The differentiation of naïve CD4+ T cells into subsets of T helper cells (Th) is an
essential process that impacts host defense and the pathogenesis of immunemediated
diseases. Signal transducers and activators of transcription (STAT)
proteins, activated downstream of instructive cytokines, dictate and perpetuate
the lineage decision of Th cells through both positive and negative effects. This
is accomplished by regulating transcription factors, surface receptors and
promoting epigenetic changes in gene expression through chromatin remodeling.
Transforming growth factor-β1 (TGF-β1) can induce Foxp3 in developing Th cells
and these Foxp3-expressing adaptive T regulatory cells (aTregs) are able to
suppress inflammation in vitro and in vivo. To define the mechanism by which
STAT proteins regulate Th cell pro- and anti-inflammatory phenotypes, we
examined T cells deficient in Stat3, Stat4, and Stat6 as well as T cells expressing
two STAT4 isoforms after being cultured in the presence or absence of TGF-β1
and cytokines known to be instructive in Th cell development. The negative
effects of STAT proteins are demonstrated by our results indicating STAT3,
STAT4 and STAT6 proteins activated downstream of the instructive cytokines IL-
6, IL-12 and IL-4, respectively, negatively regulate the development of TGF-β
induced Foxp3 and aTreg development. STAT3, STAT4, and STAT6 utilize a
vi
Mark H. Kaplan, Ph.D., Chair
common mechanism to inhibit aTreg generation by inhibiting STAT5, a positive
regulator of Foxp3 expression, from binding to the Foxp3 gene. STAT proteins
positively effecting inflammatory immunity are demonstrated by our analysis of
STAT4 isoforms and their ability to regulate the production of proinflammatory
cytokines downstream of IL-12. STAT4β, a STAT4 splice isoform that lacks a Cterminal
domain, and STAT4α, a full-length isoform are both capable of
mediating inflammatory cell development. However, STAT4β promotes greater
inflammation in vivo than STAT4α independent of its ability to repress Foxp3.
Instead, the inflammation correlates with STAT4 isoform-dependent expression
of inflammatory cytokines. Thus, cytokine-stimulated STAT proteins orchestrate
T helper cell pro- and anti-inflammatory cell phenotypes.
|
4 |
Identifying Novel Disease-associated Variants and Understanding the Role of the STAT1-STAT4 Locus in SLEPatel, Zubin 15 December 2017 (has links)
No description available.
|
5 |
Transcriptional control of interferon gamma synthesis by natural killer cellsBecknell, Michael B. 11 August 2006 (has links)
No description available.
|
6 |
The Role of Macrophages and the Th1 Transcription Factors STAT1 and STAT4 During Visceral LeishmaniasisSteinkamp, Heidi Marie 13 August 2012 (has links)
No description available.
|
7 |
Causes et conséquences de l’activation de l’interféron de type I dans les maladies auto-immunes. Étude dans le modèle du syndrome de Sjögren / Causes and consequences of type I IFN activation in autoimmune diseases. Study in the Sjögren's syndrome model.Gestermann, Nicolas 13 January 2012 (has links)
Le syndrome de Sjögren primitif (SSp) est une maladie auto-immune (MAI) systémique ayant des caractéristiques communes avec le lupus érythémateux. Ces caractéristiques incluent des mécanismes physiopathologiques et des facteurs de predispositions génétiques. Notre équipe et d’autres groupes ont pu mettre en evidence une signature interféron (IFN) dans les glandes salivaires et les PBMCs de patients ayant un SSp. Cette découverte a permis de mettre en évidence de nouvelles voies à explorer dans la pathogénie du SLE et SSp en permettant la focalisation des recherches sur le rôle de l’immunité innée et de la voie IFN.Nous avons confirmé le rôle de 2 gènes importants dans le SSp, impliqués dans les voies des IFN. Le premier est IRF5 sur la voie IFN de type I et STAT4 sur la voie IFN de type II. Nous avons pu mettre en évidence une fonctionnalité de l’allèle à risque d’IRF5 (Polymorphisme Indel situé dans le promoteur). Concernant STAT4, son expression n’était pas altérée par le SNP associé à la maladie. Toutefois, l’ARNm de STAT4 était corrélé à l’expression des gènes IFN de type I. Les dérégulations épigénétique pourraient jouer un rôle important dans la pathogénie de nombreuses MAI, en particulier la méthylation de l’ADN qui est hautement liée à l’extinction de l’expression des gènes. Nous avons étudié la méthylation du promoteur d’IRF5 et nous n’avons pas trouvé de régulation de ce promoteur par le méthylation. Une analyse de la méthylation avec une approche globale du méthylome est en cours dans notre équipe et permettra d’identifier de gènes cibles d’une dérégulation épigénétique pouvant être impliqués dans les MAI.Nous avons essayé de comprendre la relation entre STAT4 et gènes IFN de type I. Ainsi, nous rapportons que l’IL-12 induit spécifiquement l’IFN de type I par intéraction entre deux partenaires cellulaires, les lymphocytes T CD4+ et les cellules dendritiques plasmacytoïdes. Ces résultats pourraient expliquer l’implication des polymorphismes de STAT4 dans les MAI dépendantes de l’IFN de type I. Ces résultats suggèrent également que les MAI dépendantes des IFN de type I et II ne s’opposent pas. Elles seraient seulement le Yin et le Yang d’un facteur d’activation commun, STAT4, capable d’induire les IFNs de type I et II. / Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease (AID) that presents similar characteristics to systemic lupus erythematosus. These characteristics include pathophysiology and genetic factors. Our team and other groups have highlighted an interferon (IFN) signature in salivary glands and PBMCs from patients with Sjögren syndrome. This signature demonstrates new pathways in pSS and lupus, focusing research on innate immunity and in the IFN pathway.We have confirmed the implication of 2 genes in the pSS, and these genes are involved in the IFN pathway. The first gene is IRF5 which is in the type I IFN pathway and the second is STAT4 which is in the type II IFN pathway. We have shown a functional consequence of IRF5 at-risk allele. Regarding STAT4, the associated SNP did not altered STAT4 mRNA expression but was highly correlated with type I IFN genes expression.The epigenetic deregulation could play a triggering role in autoimmune diseases, particularly through DNA methylation which is highly implicated in the suppression of gene expression. We studied the methylation of IRF5 promoter and found no methylation. Our team is currently undertaking a global approach with methylome analysis. This methylome study will assess specific gene methylation patterns and will allow a better understanding of the role of these genes in autoimmune diseases.We further demonstrated that IL-12 specifically induces a type I IFN signature through a CD4+ T cells and pDCs crosstalk. These results could explain the implication of STAT4 polymorphism not only in type II IFN-dependent AIDs but also in type I IFN-dependent AIDs. Our data confirm that type I IFN- and type II IFN-mediated AIDs do not have to be opposed. They are only the yin and the yang of a common STAT4 activation which may induce secretion of both cytokines.
|
8 |
Cardiovascular Disease and Immune Mechanisms in Systemic Lupus ErythematosusLeonard, Dag January 2014 (has links)
Systemic lupus erythematosus (SLE) is an autoimmune, inflammatory disease characterized by autoantibody production and an activated type I interferon system. Cardiovascular disease (CVD) is as a major cause of morbidity and mortality. The aim of this thesis was to identify genetic risk factors for CVD in SLE. The role of T cells in regulation of the interferon-α (IFNα) production by plasmacytoid dendritic cells (pDCs) was also investigated. In paper I, a thicker intima, thinner media and increased intima/media ratio was found in young premenopausal women with SLE compared to healthy controls indicating increased cardiovascular risk. As traditional ultrasound assessment of the common carotid intima-media thickness (CCA-IMT) in SLE has given conflicting results separate measurement of the intima and media can be a useful tool to identify SLE patients at increased risk of CVD. In paper II, an association was demonstrated in SLE between a STAT4 risk allele and ischemic cerebrovascular disease and presence of anti-phospholipid antibodies (aPL). The association remained after adjustment for traditional CVD risk factors. A possible mechanism for this association is that the risk allele leads to increased production of aPL, which promotes thromboembolism. In paper III, a genetic locus in IRF8 was identified to be associated to coronary heart disease (CHD) in SLE. The association remained after adjustment of other CHD risk factors. Patients with the IRF8 risk variant had increased CCA-IMT, more carotid plaques and reduced frequency of circulating B cells. Weaker binding of nuclear protein to the risk allele was demonstrated, suggesting a regulatory function of the IRF8 risk variant. In paper IV, activated T cells were found to strongly enhance the IFNα production by pDC stimulated with RNA-containing immune complexes via GM-CSF and IL-3. Activated SLE T cells enhanced the IFNα production to the same extent as T cells from healthy controls. This finding together with previous observations in SLE of increased levels of GM-CSF and IL-3 suggests that T cells contribute to the activated type I interferon system in SLE. In conclusion, this thesis demonstrates that genetic predisposition is important for CVD in SLE and describes a new role for T cells in the pathogenesis of SLE.
|
9 |
CIS REGULATORY MODULE DISCOVERY IN TH1 CELL DEVELOPMENTGanakammal, Satishkumar Ranganathan January 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Immune response enables the body to resist foreign invasions. The Inflammatory response is an important aspect in the immune response which is articulated by elements such as cytokines, APC, T-cell and B-cell, effector cell or natural killer. Of these elements, T-cells especially T-helper cells; a sub class of T-cells plays a pivotal role in stimulating the immune response by participating in various biological reactions such as, the transcription regulatory network. Transcriptional regulatory mechanisms are mediated by a set of transcription factors (TFs), that bind to a specific region (motifs or transcription factor binding sites, TFBS), on the target gene(s) controlling the expression of genes that are involved in T-helper cell mediated immune response. Eukaryotic regulatory motifs, referred to as cis regulatory modules (CRMs) or cistrome, co-occur with the regulated gene’s transcription start site (TSS) thus, providing all the essential components for building the transcriptional regulatory networks that depends on the relevant TF-TFBS interactions. Here, we study IL-12 stimulated transcriptional regulators in STAT4 mediated T helper 1 (Th1) cell development by focusing on the identification of TFBS and CRMs using a set of Stat4 ChIP-on-chip target genes. A region containing 2000 bases of Mus musculus sequences with the Stat4 binding site, derived from the ChIP-on-chip data, has been characterized for enrichment of other motifs and, thus CRMs. Our experiments identify some potential motifs, (such as NF-κB and PPARγ/RXR) being enriched in the Stat4 binding sequences compared to neighboring background sequences. Furthermore, these predicted CRMs were observed to be associated with biologically relevant target genes in the ChIP-on-chip data set by meaningful gene ontology annotations. These analyses will enable us to comprehend the complicated transcription regulatory network and at the same time categorically analyze the IL-12 stimulated Stat4 mediated Th1 cell differentiation.
|
10 |
Dissecting the Genetic Basis of Systemic Lupus Erythematosus : The Pursuit of Functional VariantsDelgado Vega, Angélica María January 2013 (has links)
Systemic lupus erythematosus (SLE) is a chronic and systemic autoimmune disease that primarily affects women during the childbearing years. SLE is characterized by the production of autoantibodies against nucleic acids and their interacting proteins. The exact molecular mechanisms leading to the breakdown of self-tolerance remain to a large extent unknown, but it is well established that they are influenced by both non-genetic (i.e. environmental and hormonal) and genetic factors. SLE is a complex, polygenic disease. Several susceptibility variants have been identified in SLE. However, the functional role in disease pathogenesis for the majority of them remains largely unknown. This thesis includes case-control association studies where the role of the genes TNFSF4 (Paper I), STAT4 (Paper II), CD226 (Paper III), and BLK (Papers IV and V) in the susceptibility of developing SLE was investigated. The primary focus was on the identification of the functional variants underlying the association. For each of these genes, fine mapping was performed using single nucleotide polymorphisms (SNPs), the linkage disequilibrium (LD) was characterized, and the association was narrowed down to specific haplotypes by means of several different statistical genetic strategies. Candidate variants were prioritized for further functional analysis on the basis of their potential effect on the gene function, their association, and/or biological plausibility. In Paper I, the association of TNFSF4 with SLE was validated and attributed to a risk haplotype tagged by SNPs rs1234317-T and rs12039904-T. Paper II provides evidence supporting the presence of at least two independent genetic effects within the STAT4 gene represented by rs3821236-A and rs7574865-A, which correlated with increased levels of gene expression. In Paper III, a functional allele in CD226 (rs727088-C) was identified, which was responsible for decreased levels in both mRNA and protein expression. In Paper IV, two independent genetic effects in the BLK gene were demonstrated. The first one comprised multiple regulatory variants in high LD that were enriched for NFκB and IRF4 binding sites and correlated with low BLK mRNA levels. The second was a low-frequency missense substitution (Ala71Thr) that decreased the BLK protein half-life. In Paper V, a genetic epistatic interaction between BANK1 rs10516487 (GG) and BLK rs2736340 (TT+TC) was demonstrated. Additional molecular analyses established that these molecules interact physically. These studies have contributed to the dissection of the genetic architecture of SLE. They highlight the allelic heterogeneity of the disease and provide functional links to the associated variants, which has significantly aided in the understanding of SLE disease pathogenesis.
|
Page generated in 0.0453 seconds