• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Využití polymerních proléčiv s cucurbitacinem D pro léčbu experimentálních nádorů / Use of polymer prodrugs containing cucurbitacin D for the treatment of experimental tumors

Hrabánková, Klára January 2021 (has links)
Chemotherapy is still the most widely used anti-cancer treatment. The majority of chemotherapeutics inhibit proliferating cells generally, not selectively cancer cells. The side effects associated with chemotherapy can be partly limited by conjugating a cytotoxic drug with a polymer nanocarrier. Such binding facilitates solubility in aqueous solutions, reduces systemic toxicity; and passively targets the drug directly into the tumour through the enhanced permeability and retention (EPR) effect. This thesis focuses on testing polymer conjugates based on N-(2-hydroxypropyl)methacrylamide (HPMA) carrying cucurbitacin D (CuD), a naturally occurring compound with potential anti-cancer activity. The mechanism of action is not elucidated yet, but several studies have depicted the inhibitory effect on signal transducer and activator of transcription 3 (STAT3) transcription factor. A STAT3 signalling pathway is overexpressed in several cancer cell lines and is also involved in the differentiation of myeloid- derived suppressor cells (MDSCs). We examined the therapeutic effect of the HPMA copolymers based on CuD in combined therapy with other polymer chemotherapeutics. CuD conjugates have shown in vitro cytotoxic effect on several model cancer cell lines. The combination with conjugates carrying doxorubicin...
2

Evaluation of the consequences of ERK and STAT3 activation in the heart

Badrian, Bahareh January 2006 (has links)
[Truncated abstract] The enlargement of the heart, also known as myocardial hypertrophy, is thought to be a compensatory process that maintains the mechanical function of the heart in response to stress factors such as pressure or volume overload. Although this process is initially compensatory, it frequently results in heart failure and death. Cardiac hypertrophy is a complex process involving changes in the individual cardiac muscle cells, cardiac myocytes. As well as the morphological changes that result from hypertrophy, there are molecular changes within each cell that regulate the hypertrophic process. These molecular changes involve many different pathways within the cardiac myocytes and remain poorly understood . . . Both STAT3α and β overexpression resulted in the upregulation of the VEGF, MnSOD and SOCS-3 genes. This indicates that in the heart, STAT3β is able to activate the gene expression of these genes in a similar manner to STAT3α. However, STAT3α or β activation alone is not enough to induce cardiac hypertrophy. In conclusion, the results presented in this thesis determined a novel role for ERK in the induction of cell death in the heart and revealed many changes in cardiac gene expression following ERK activation. These genes may be the mediators of ERK responses and their identification provides valuable information and direction for further research in this area. One consequence of ERK activation was the negative regulation of the STAT3 pathway. Further investigation revealed for the first time that the STAT3 proteins themselves may not be involved in the induction of cardiac hypertrophy and that STAT3β, initially thought to be a transcriptional repressor, can induce the expression of genes that are known to be activated by STAT3α in the heart. Therefore, these results help to better understand the roles of these two signalling pathways in the heart.
3

Étude structurale et fonctionnelle d'un nouvel ARN non codant, Asgard, contrôlant l'autorenouvellement des cellules souches embryonnaires / Characterization of a novel non coding RNA, Asgard, which controls the self-renewal of mouse embryonic stem cells

Giudice, Vincent 18 December 2013 (has links)
Chez la souris, le Leukemia Inhibitory Factor (LIF) joue un rôle clé dans le maintien des cellules souches embryonnaires (ES) à l’état pluripotent. Le LIF agit en activant le facteur de transcription STAT3 via les kinases Jak. Cette activation est nécessaire et suffisante au maintien des cellules ES en autorenouvellement en présence de sérum. Une étude du transcriptome de STAT3 réalisée au laboratoire a permis d’identifier plusieurs gènes cibles de ce facteur, parmi lesquels plusieurs gènes inconnus. L’un d’eux, le gène 1456160_at, est fortement exprimé dans les cellules ES de souris et son expression diminue après induction de la différenciation. Ce gène a été appelé Asgard pour Another Self-renewal GuARDian. La caractérisation et le séquençage de ce gène ont permis de mettre en évidence qu'Asgard code pour un microARN. De nombreux microARNs jouent un rôle clé dans le maintien de l'autorenouvellement des cellules ES et dans le contrôle de la différenciation. Des expériences d’inhibition et de surexpression ont permis de montrer que Asgard est impliqué dans la régulation de la différenciation endoderme versus mésoderme. Des analyses préliminaires ont permis d’identifier Pbx3, FoxA2 et Sox17 comme cibles potentielles. Bien que les mécanismes d’action du microARN Asgard restent à confirmer, ce travail a permis d’identifier un nouveau gène clé de l'autorenouvellement des cellules ES de souris / The Leukemia Inhibitory Factor (LIF) activates the transcription factor STAT3, which results in the maintenance of mouse embryonic stem cells in the undifferentiated state by inhibiting mesodermal and endodermal differentiation. We identified several target genes of STAT3 by transcriptomic analysis. Among them, we focused on an unknown gene referred as 1456160_at on Affymetrix array. This gene is highly expressed in embryonic stem cells and its expression level decreases during differentiation. We named this gene Asgard for Another Self-renewal GuARDian. Its characterization and sequencing revealed that Asgard encodes for a microRNA sequence. Several microRNAs have been shown to play key role in the maintenance of self-renewal of mouse ES cells and in the control of differentiation. Inhibition and overexpression assays showed that Asgard inhibits endodermal differentiation in order to maintain self-renewal. Through preliminary analysis, we identified Pbx3, FoxA2 and Sox17 as potential targets of the microRNA Asgard. Our work enables us to identify a new key gene of self-renewal of mouse ES cells

Page generated in 0.0794 seconds