• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

IN-SITU PERFORMANCE OF SU-FREI BRIDGE BEARINGS

van Galen, Zachary January 2023 (has links)
Stable Unbonded Fibre Reinforced Elastomeric Isolators (SU-FREI) have been investigated extensively for seismic applications, with over 20 years of literature supporting their use in isolation of structures as an alternative to conventional Steel Reinforced Elastomeric Isolators (SREI). Preliminary investigations have been conducted into their potential use as bridge bearings, where they could provide an alternative to unreinforced and steel reinforced elastomeric bearings. SU-FREI offer a number of potential advantages in this application relative to SREI, including compactness due to thinner reinforcement layers, ease of installation, rotational tolerances, and ease of manufacture. Recently, SU-FREI have been installed under certain highway bridges along the 407 ETR where the previous unreinforced elastomeric bearings had experienced failure. Monitoring has been conducted by Associated Engineering for the 407 ETR Corporation. Data was collected from this monitoring program and field visits have been conducted to observe the condition of the bearings. The original design process used for the SU-FREI bearings has also been reviewed. The monitoring data was compared against design calculations, and the behavior of the SU-FREI analysed to determine whether they meet performance expectations and are suitable for further use as bridge bearings. It was found that some SU-FREI had experienced degradation, including the appearance of an unidentified liquid. The causes of deterioration were investigated and postulated to be primarily related to design limitations imposed by the geometry of the bridges, original design calculation assumptions, and installation issues. Where these factors were not present, the SU-FREI bearings were found to have experienced little to no deterioration. Furthermore, it was determined through comparative design calculations that the FREI outperformed equivalent SREI with regard to rotational capacity. Recommendations have been developed for future deployment of SU-FREI as bridge bearings. Based on the results of initial deployments, larger-scale employment of SU-FREI in this application should be considered. / Thesis / Master of Applied Science (MASc) / Concrete and steel bridges deform due to temperature changes, traffic motion, and other factors. To allow these deformations without inducing large forces or damage, bearings are employed between the bridge deck and supports. One type of bearing consists of alternating layers of rubber and steel: steel strengthens the bearing, while the rubber provides lateral and rotational flexibility. A relatively new type of bearing has been developed and tested that replaces the steel layers with carbon fibre. Recently, several of these new SU-FREI bearings have been installed on actual highway bridges. The focus of this thesis is on the performance of SU-FREI installed as bridge bearings. The goal was to observe their performance, identify any unexpected behavior, and create recommendations for future consideration whenever SU-FREI are to be used as bridge bearings. Generally, it was found that their performance is satisfactory provided they are designed and used appropriately.
2

BASE ISOLATION USING STABLE UNBONDED FIBRE REINFORCED ELASTOMERIC ISOLATORS (SU-FREI)

Foster, Andrew Douglas Barry 04 1900 (has links)
<p>Seismic isolation is a seismic design philosophy that aims to reduce the demand on structures as opposed to increasing their capacity to endure forces. Seismic isolation can be achieved by placing isolating bearings with relatively low stiffness compared to the structure itself beneath the superstructure. This low stiffness layer increases the structural period, shifting the structure into a period range of low seismic energy content.</p> <p>The objectives of this research were to investigate the dynamic properties, durability and limitations of stable unbonded fibre reinforced elastomeric isolator (SU-FREI) bearings. Vertical compression testing indicated the bearings possessed adequate vertical stiffness. Due to lack of bonding at the bearing interface surfaces rollover deformation was observed to occur during lateral cyclic testing. This response behaviour was found to result in advantageous effective lateral stiffness and damping properties. The bearings maintained stability during rollout testing while serviceability and fatigue testing both conformed to code specified test specimen adequacy limitations. Experimental shake table testing showed that the isolated structure behaved essentially as a rigid body during testing. Test results showed that a SU‐FREI isolation system significantly reduced the seismic demand on the structure.</p> <p>Modelling of the bearings dynamic properties was completed using a bilinear model and a backbone curve model. Both models showed adequate results in predicting experimental peak responses. A simplified design spectrum analysis was presented and used to model the structure in four Canadian cities. This design spectrum analysis approach showed adequate capabilities in predicting peak response values, such that the method could be used in preliminary analysis and design of isolated structures.</p> / Master of Applied Science (MASc)

Page generated in 0.0192 seconds