• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Reactive Carbonyl Methylglyoxal Suppresses Vascular KATP Channels by MRNA Destabilization

Konduru, Anuhya S 16 November 2011 (has links)
Diabetes mellitus is characterized by hyperglycemia, oxidative stress and excessive production of intermediary metabolites including methylglyoxal (MGO), a reactive carbonyl. MGO can readily interact with proteins, lipids and DNA, and cause an imbalance of the cellular antioxidant system leading to carbonyl stress. The effects of MGO can be devastating if the targeted molecules are responsible for the maintenance of membrane potentials and ionic homeostasis. Here we show that MGO disrupts the vascular isoform of ATP-sensitive K+ (KATP) channels by acting on the mRNAs of Kir6.1 and SUR2B subunits thereby regulating vascular tone. Our results show that the 3’ untranslated region (UTR) of Kir6.1 mRNA and the coding region of SUR2B mRNA are targeted by MGO causing a disruption of vascular KATP channels. The destabilization of the mRNAs of KATP channel can in turn affect K+ homeostasis of vascular smooth muscles as well as vascular responses to circulating vasodilators and vasoconstrictors.
2

Investigations into the roles of potassium channels in hair growth. Studies confirming the presence of several ATP-­sensitive potassium (K+ATP) channels in hair follicles and exploring their mechanism of action using molecular biological, cell culture, organ culture and proteomic approaches.

Zemaryalai, Khatera January 2010 (has links)
Hair disorders cause significant distress. The main, but limited, treatment for hair loss is minoxidil, an ATP-­sensitive potassium (KATP) channel opener whose mechanism of stimulation is unclear. The regulatory component of KATP channels has three forms: SUR1, SUR2A and SUR2B which all respond to different molecules. Minoxidil only opens SUR2B channels, though SUR1 and SUR2B are present in human hair follicles. To expand our understanding, the red deer hair follicle model was used initially. Deer follicles expressed the same KATP channel genes as human follicles when growing (anagen), but no channels were detected in resting follicles. This reinforces the importance of KATP channels in active hair growth and the usefulness of the deer model. To assess whether SUR1 KATP channels are actually involved in human hair growth, the effects of a selective SUR1 channel opener, NNC55-­9216, on scalp follicle growth in organ culture was examined. NNC55-­9216 stimulated anagen; its effect was augmented by minoxidil. This creates the potential for more effective pharmaceuticals to treat hair loss via SUR1 channels, either alone or in combination with minoxidil. The dermal papilla plays a crucial regulatory role in hair follicle activity determining the type of hair produced. Minoxidil had no effect on dermal papilla cell proliferation, but altered the profile of proteins produced when assessed by proteomics. Further research into the roles of KATP channels and greater understanding of the significance of these protein changes should enhance our knowledge of hair biology and help the development of new, improved therapies for hair pathologies.
3

KATP Channel Phosphorylation: Mechanisms and Contribution to Vascular Tone Regulation by Vasodilating and Vasoconstricting Hormones and Neurotransmitters

Shi, Yun 03 December 2007 (has links)
Contractility of vascular smooth muscles (VSMs) in resistance arteries determines systemic blood pressure and blood supplies to local tissues, in which ATP sensitive K+ (KATP) channels play a role. The KATP channels that couple metabolic state to cellular activity are activated by multiple hormonal vasodilators and inhibited by vasoconstrictors. To understand the molecular mechanisms for the channel regulation by vasodilators, we studied the effects of β-adrenergic receptors on Kir6.1/SUR2B in HEK cells. Stimulation of β-adrenergic receptors activated the channels, which relied on the GS-protein, adenylyl cyclase, cAMP and PKA system. Using mutational analysis, we scanned all the putative PKA sites on Kir6.1 and SUR2B subunits and identified two residues (Ser1351 and Ser1387) in SUR2B critical for channel activation. In vitro phosphorylation experiments confirmed that Ser1387 but not Ser1351 was phosphorylated in isolated SUR2B peptides. Molecular modeling and molecular dynamics simulations reveal that phosphorylation at Ser1387 causes interdomain movements in SUR2B subunit. Blockage of the movements by engineering a disulfide bond across NBD2 and TMD1 eliminated the PKA-dependent channel activation. We also studied the molecular basis for the inhibition of vascular KATP channels by PKC. In the HEK expression system, we found that the Kir6.1/SUR2B channel but not the Kir6.2/SUR2B was drastically inhibited by PKC stimulation. We constructed Kir6.1/Kir6.2 chimeras and identified two critical protein domains for the Kir6.1 channel inhibition by PKC. The distal C-terminus was the direct target of PKC where multiple phosphorylation sites were identified. These phosphorylation sites were located in a short sequence with stereotypical sequence repeats. Mutation of any decreased the effects of PKC. Joint mutation of all of them prevented the channel inhibition by PKC. The proximal N-terminus is also involved in PKC effects without phosphorylation sites, suggesting it may play a role in channel gating. Thus, this thesis provides experimental evidence for the vascular KATP channel modulation by PKA and PKC. Phosphorylation of the Kir6.1 and SUR2B subunits by PKC and PKA produce inhibition and activation of the vascular KATP channel, respectively, which appears to be one of the molecular bases contributing to vascular tone regulation by both vasoconstricting and vasodilating hormones and neurotransmitters.
4

Investigations into the roles of potassium channels in hair growth : studies confirming the presence of several ATP-­sensitive potassium (K+ATP) channels in hair follicles and exploring their mechanism of action using molecular biological, cell culture, organ culture and proteomic approaches

Zemaryalai, Khatera January 2010 (has links)
Hair disorders cause significant distress. The main, but limited, treatment for hair loss is minoxidil, an ATP-sensitive potassium (KATP) channel opener whose mechanism of stimulation is unclear. The regulatory component of KATP channels has three forms: SUR1, SUR2A and SUR2B which all respond to different molecules. Minoxidil only opens SUR2B channels, though SUR1 and SUR2B are present in human hair follicles. To expand our understanding, the red deer hair follicle model was used initially. Deer follicles expressed the same KATP channel genes as human follicles when growing (anagen), but no channels were detected in resting follicles. This reinforces the importance of KATP channels in active hair growth and the usefulness of the deer model. To assess whether SUR1 KATP channels are actually involved in human hair growth, the effects of a selective SUR1 channel opener, NNC55-9216, on scalp follicle growth in organ culture was examined. NNC55-9216 stimulated anagen; its effect was augmented by minoxidil. This creates the potential for more effective pharmaceuticals to treat hair loss via SUR1 channels, either alone or in combination with minoxidil. The dermal papilla plays a crucial regulatory role in hair follicle activity determining the type of hair produced. Minoxidil had no effect on dermal papilla cell proliferation, but altered the profile of proteins produced when assessed by proteomics. Further research into the roles of KATP channels and greater understanding of the significance of these protein changes should enhance our knowledge of hair biology and help the development of new, improved therapies for hair pathologies.
5

KATP Channel Action in Vascular Tone Regulation During Septic Shock: Beyond Physiology

Shi, Weiwei 23 March 2009 (has links)
Septic shock is a major cause of deaths resulting from uncontrolled inflammation and circulatory failure. Recent studies suggest that the vascular isoform of ATP-sensitive K+ (KATP) channels is an important contributor to septic susceptibility. To understand the molecular mechanisms for channel regulation during sepsis, we performed studies in isolated endothelium-denuded mesenteric rings. Lipopolysaccharides (LPS) induced vascular relaxation and hyporeactivity to phenylephrine. The LPS-treated aortic smooth muscle cells displayed hyperpolarization and augmentation of KATP channel activity. Both were due to an up-regulation of Kir6.1 and SUR2B surface expression. The up-regulation relied on transcriptional and translational mechanisms, in which nuclear factor-¦ÊB (NF-¦ÊB) and Protein kinase A (PKA) played a critical role. Oxidative stress occurs during sepsis and may act as another regulatory mechanism affecting KATP channel activity and vascular contractility. We found that micromolar concentrations of H2O2 impaired the pinacidil-induced vasodilation. The effect attributed to the suppression of KATP channel activity, which can be fully produced by reactivity oxidants. Unlike the Kir6.1/SUR2B channel, the Kir6.2/SUR2B channel was insensitive to 1mM H2O2, indicating that the modulation sites are located in Kir6.1. Site-directed mutational analysis showed that three cysteine residues located in N-terminus and the core region of Kir6.1 were likely to mediate the redox-dependent channel modulation. Arginine vasopressin (AVP) is a vasoconstrictor that is successfully applied to manage sepsis. However, the downstream target of AVP is uncertain. Our studies show that AVP-induced vasoconstriction depended on V1a receptor, Protein kinase C (PKC) and KATP channel. Additionally, AVP decreased Kir6.1/SUR2B channel activity through V1a receptor. The inhibitory effect was caused by a suppression of the channel open state probability. The channel inhibition was mediated by phosphorylation of the channel protein by PKC. The widespread involvement of the vascular KATP channel in vascular responses to endotoxemia strongly suggests that the temporospatial control of channel activity may constitute an important intervention to vascular tone, blood pressure and organ-tissue perfusion in septic shock. Such a control appears feasible by targeting several modulatory mechanisms of intracellular signaling, Kir6.1/SUR2B expression, redox state and channel protein phosphorylation as demonstrated in this dissertation.
6

Vascular KATP Channel Modulation by S-Glutathionylation: A Novel Mechanism for Cellular Response to Oxidative Stress

Yang, Yang 29 April 2011 (has links)
The KATP channels play an important role in the membrane excitability and vascular tone regulation. Previous studies indicate that the function of KATP channels is disrupted in oxidative stress seen in a variety of cardiovascular diseases, while the underlying mechanism remains unclear. Here, we demonstrate S-glutathionylation to be a modulation mechanism underlying the oxidant-mediated vascular KATP channel inhibition, the molecular basis for the channel inhibition and the alleviation of the channel inhibition by vasoactive intestinal peptide (VIP). We found that an exposure of isolated mesenteric rings to H2O2 impaired the KATP channel-mediated vascular dilation. In whole-cell recordings and inside-out patches, micromolar H2O2 or diamide caused a strong inhibition of the vascular KATP channel (Kir6.1/SUR2B) in the presence, but not in the absence, of glutathione (GSH), indicating S-glutathionylation. By co-expressions of Kir6.1 or Kir6.2 with SUR2B subunits, we found that the oxidant sensitivity of the KATP channel relied on the Kir6.1 subunit. Systematic mutational analysis revealed three cysteine residues (Cys43, Cys120 and Cys176) to be important. Among them, Cys176 was prominent, contributing to >80% oxidant sensitivity. Biochemical pull-down assay with biotinylated glutathione ethyl ester (BioGEE) showed that mutations of Cys176 impaired the oxidant-induced incorporation of GSH to the Kir6.1 subunit. Simulation modeling of Kir6.1 S-glutathionylation revealed that after incorporation to residue 176, the GSH moiety occupied a space between slide helix and two transmembrane helices. This prevented the necessary conformational change of the inner helix for channel gating, and retained the channel in its closed state. VIP is a potent vasodilator, and is shown to have protective role against oxidative stress. We found that the channel was strongly augmented by VIP and the channel activation relied on PKA phosphorylation. These results therefore indicate that 1) the vascular KATP channel is strongly inhibited in oxidative stress, 2) S-glutathionylation underlies the oxidant-mediated KATP channel inhibition, 3) Cys176 in the Kir6.1 subunit is the major site for S-glutathionylation, and 4) the Kir6.1/SUR2B channel is activated in a PKA-dependent manner by VIP that has been previously shown to alleviate oxidative stress.

Page generated in 0.0208 seconds