• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

KATP Channel Phosphorylation: Mechanisms and Contribution to Vascular Tone Regulation by Vasodilating and Vasoconstricting Hormones and Neurotransmitters

Shi, Yun 03 December 2007 (has links)
Contractility of vascular smooth muscles (VSMs) in resistance arteries determines systemic blood pressure and blood supplies to local tissues, in which ATP sensitive K+ (KATP) channels play a role. The KATP channels that couple metabolic state to cellular activity are activated by multiple hormonal vasodilators and inhibited by vasoconstrictors. To understand the molecular mechanisms for the channel regulation by vasodilators, we studied the effects of β-adrenergic receptors on Kir6.1/SUR2B in HEK cells. Stimulation of β-adrenergic receptors activated the channels, which relied on the GS-protein, adenylyl cyclase, cAMP and PKA system. Using mutational analysis, we scanned all the putative PKA sites on Kir6.1 and SUR2B subunits and identified two residues (Ser1351 and Ser1387) in SUR2B critical for channel activation. In vitro phosphorylation experiments confirmed that Ser1387 but not Ser1351 was phosphorylated in isolated SUR2B peptides. Molecular modeling and molecular dynamics simulations reveal that phosphorylation at Ser1387 causes interdomain movements in SUR2B subunit. Blockage of the movements by engineering a disulfide bond across NBD2 and TMD1 eliminated the PKA-dependent channel activation. We also studied the molecular basis for the inhibition of vascular KATP channels by PKC. In the HEK expression system, we found that the Kir6.1/SUR2B channel but not the Kir6.2/SUR2B was drastically inhibited by PKC stimulation. We constructed Kir6.1/Kir6.2 chimeras and identified two critical protein domains for the Kir6.1 channel inhibition by PKC. The distal C-terminus was the direct target of PKC where multiple phosphorylation sites were identified. These phosphorylation sites were located in a short sequence with stereotypical sequence repeats. Mutation of any decreased the effects of PKC. Joint mutation of all of them prevented the channel inhibition by PKC. The proximal N-terminus is also involved in PKC effects without phosphorylation sites, suggesting it may play a role in channel gating. Thus, this thesis provides experimental evidence for the vascular KATP channel modulation by PKA and PKC. Phosphorylation of the Kir6.1 and SUR2B subunits by PKC and PKA produce inhibition and activation of the vascular KATP channel, respectively, which appears to be one of the molecular bases contributing to vascular tone regulation by both vasoconstricting and vasodilating hormones and neurotransmitters.
2

KATP Channel Action in Vascular Tone Regulation During Septic Shock: Beyond Physiology

Shi, Weiwei 23 March 2009 (has links)
Septic shock is a major cause of deaths resulting from uncontrolled inflammation and circulatory failure. Recent studies suggest that the vascular isoform of ATP-sensitive K+ (KATP) channels is an important contributor to septic susceptibility. To understand the molecular mechanisms for channel regulation during sepsis, we performed studies in isolated endothelium-denuded mesenteric rings. Lipopolysaccharides (LPS) induced vascular relaxation and hyporeactivity to phenylephrine. The LPS-treated aortic smooth muscle cells displayed hyperpolarization and augmentation of KATP channel activity. Both were due to an up-regulation of Kir6.1 and SUR2B surface expression. The up-regulation relied on transcriptional and translational mechanisms, in which nuclear factor-¦ÊB (NF-¦ÊB) and Protein kinase A (PKA) played a critical role. Oxidative stress occurs during sepsis and may act as another regulatory mechanism affecting KATP channel activity and vascular contractility. We found that micromolar concentrations of H2O2 impaired the pinacidil-induced vasodilation. The effect attributed to the suppression of KATP channel activity, which can be fully produced by reactivity oxidants. Unlike the Kir6.1/SUR2B channel, the Kir6.2/SUR2B channel was insensitive to 1mM H2O2, indicating that the modulation sites are located in Kir6.1. Site-directed mutational analysis showed that three cysteine residues located in N-terminus and the core region of Kir6.1 were likely to mediate the redox-dependent channel modulation. Arginine vasopressin (AVP) is a vasoconstrictor that is successfully applied to manage sepsis. However, the downstream target of AVP is uncertain. Our studies show that AVP-induced vasoconstriction depended on V1a receptor, Protein kinase C (PKC) and KATP channel. Additionally, AVP decreased Kir6.1/SUR2B channel activity through V1a receptor. The inhibitory effect was caused by a suppression of the channel open state probability. The channel inhibition was mediated by phosphorylation of the channel protein by PKC. The widespread involvement of the vascular KATP channel in vascular responses to endotoxemia strongly suggests that the temporospatial control of channel activity may constitute an important intervention to vascular tone, blood pressure and organ-tissue perfusion in septic shock. Such a control appears feasible by targeting several modulatory mechanisms of intracellular signaling, Kir6.1/SUR2B expression, redox state and channel protein phosphorylation as demonstrated in this dissertation.
3

Efeitos redox e protetores do pré-condicionamento isquêmico e da abertura do canal mitocondrial de potássio sensível a ATP contra morte celular por isquemia e reperfusão cardíaca / Redox and Protective Effects of Ischemic Preconditioning and Mitochondrial ATP-Sensitive K+ Channels Against Cardiac Cell Death Promoted by Ischemia and Reperfusion

Facundo, Héberty di Tarso Fernandes 22 March 2007 (has links)
Eventos isquêmicos seguidos por reperfusão levam ao dano celular e mitocondrial devido à abertura do poro de transição de permeabilidade mitocondrial (TPM). Todavia, o pré-condicionamento evita o dano celular por isquemia e reperfusão. Esse efeito protetor é semelhante ao obtido pela abertura do canal mitocondrial de potássio sensível a ATP (mitoKATP). Aqui, nós mostramos os mecanismos de sinalização que ativam o mitoKATP durante o pré-condicionamento, o papel redox destes canais e seu conseqüente mecanismo protetor. Usando células cardíacas HL-1, nós demonstramos que aumentos em espécies reativas de oxigênio (EROs) observadas durante o pré-condicionamento não foram revertidos por antagonistas do mitoKATP, que significativamente evitaram a proteção pelo pré-condicionamento. Isso sugere que essas espécies são formadas anteriormente à abertura do canal. Consistente com essa hipótese, a adição de catalase a corações perfundidos de rato e a células HL-1 promove reversão dos efeitos benéficos do pré-condicionamento, mas não do diazóxido (um agonista do mitoKATP). Por outro lado, 2-mercaptopropionil glicina preveniu a cardioproteção em ambos os casos, sugerindo que este composto deve apresentar outros efeitos além de antioxidante. De fato, verificamos que agentes redutores tiólicos interferem na ativação do mitoKATP mediada pelo diazóxido em mitocôndrias isoladas de coração de rato. Examinando como o mitoKATP pode ser ativado durante o pré-condicionamento, constatamos que EROs endógenas e exógenas fortemente ativaram o mitoKATP, sugerindo que o moderado aumento nas EROs durante o pré-condicionamento pode ativar esse canal. Uma vez ativado, o canal preveniu as condições (captação de Ca2+ e formação de EROs) que favorecem a ocorrência de TPM em situação de isquemia. A atividade deste canal também leva à diminuição de EROs gerados fisiologicamente ou durante períodos de isquemia e reperfusão, evitando o dano celular conseqüente. Este fato não envolveu nenhum aumento nos sistemas de remoção de oxidantes. Por outro lado, a inibição da TPM, usando ciclosporina A, preveniu o estresse oxidativo somente durante a reperfusão, mas protegeu as células de maneira indistinguível da abertura do mitoKATP. Juntos, nossos resultados sugerem que o mitoKATP age como um sensor para as EROs que diminui a sua geração em resposta a níveis aumentados de oxidantes. Em conseqüência, estes canais regulam o balanço redox em condições fisiológicas e previnem o estresse oxidativo em condições patológicas, inibindo com isso a ocorrência de TPM e morte celular isquêmica. / Ischemia followed by reperfusion results in impairment of cellular and mitochondrial functionality due to opening of mitochondrial permeability transition (MPT) pores. Nevertheless, preconditioning rescues cells from ischemic damage. Mitochondrial ATP-sensitive K+ channel (mitoKATP) opening also prevents cardiac ischemic cell death. Here we show the signaling mechanisms that activate mitoKATP during preconditioning, the redox role of these channels and consequent protective mechanisms. Using cardiac HL-1 cells, we found that increases in reactive oxygen species (ROS) observed during preconditioning were not inhibited by mitoKATP antagonists, although these drugs significantly avoided the protection afforded by preconditioning, suggesting their activation occurrs upstream of channel activity. Consistent with this, catalase addition to perfused rat hearts and HL-1 cells reversed the beneficial effects of preconditioning, but not of diazoxide (a mitoKATP agonist). On the other hand, 2-mercaptopropionylglycine prevented cardioprotection in both cases, suggesting this compound may present effects other than scavenging ROS. Indeed, thiol reducing agents impaired diazoxide-mediated activation of mitoKATP in isolated rat heart mitochondria. We found that endogenous or exogenous ROS strongly enhanced mitoKATP activity, suggesting that moderate increments in ROS release during preconditioning may activate mitoKATP. Furthermore, mitoKATP prevented conditions (Ca2+ uptake and ROS formation) that favor the opening of MPT pores under ischemic conditions. MitoKATP opening decreased ROS generation physiologically and during both ischemia and reperfusion, consequently avoiding cellular damage. This prevention does not involve an increase in oxidant removal systems. On the other hand, the inhibition of MPT, using cyclosporin A, prevented oxidative stress only during simulated reperfusion, but protected cells in a manner indistinguishable from mitoKATP opening. Collectively, our results suggest that mitoKATP acts as a ROS sensor that decreases mitochondrial ROS generation in response to enhanced local levels of oxidants. As a result, these channels regulate mitochondrial redox state under physiological conditions and prevent oxidative stress under pathological conditions, inhibiting MPT opening and ischemic cardiac damage.
4

Vascular KATP Channel Modulation by S-Glutathionylation: A Novel Mechanism for Cellular Response to Oxidative Stress

Yang, Yang 29 April 2011 (has links)
The KATP channels play an important role in the membrane excitability and vascular tone regulation. Previous studies indicate that the function of KATP channels is disrupted in oxidative stress seen in a variety of cardiovascular diseases, while the underlying mechanism remains unclear. Here, we demonstrate S-glutathionylation to be a modulation mechanism underlying the oxidant-mediated vascular KATP channel inhibition, the molecular basis for the channel inhibition and the alleviation of the channel inhibition by vasoactive intestinal peptide (VIP). We found that an exposure of isolated mesenteric rings to H2O2 impaired the KATP channel-mediated vascular dilation. In whole-cell recordings and inside-out patches, micromolar H2O2 or diamide caused a strong inhibition of the vascular KATP channel (Kir6.1/SUR2B) in the presence, but not in the absence, of glutathione (GSH), indicating S-glutathionylation. By co-expressions of Kir6.1 or Kir6.2 with SUR2B subunits, we found that the oxidant sensitivity of the KATP channel relied on the Kir6.1 subunit. Systematic mutational analysis revealed three cysteine residues (Cys43, Cys120 and Cys176) to be important. Among them, Cys176 was prominent, contributing to >80% oxidant sensitivity. Biochemical pull-down assay with biotinylated glutathione ethyl ester (BioGEE) showed that mutations of Cys176 impaired the oxidant-induced incorporation of GSH to the Kir6.1 subunit. Simulation modeling of Kir6.1 S-glutathionylation revealed that after incorporation to residue 176, the GSH moiety occupied a space between slide helix and two transmembrane helices. This prevented the necessary conformational change of the inner helix for channel gating, and retained the channel in its closed state. VIP is a potent vasodilator, and is shown to have protective role against oxidative stress. We found that the channel was strongly augmented by VIP and the channel activation relied on PKA phosphorylation. These results therefore indicate that 1) the vascular KATP channel is strongly inhibited in oxidative stress, 2) S-glutathionylation underlies the oxidant-mediated KATP channel inhibition, 3) Cys176 in the Kir6.1 subunit is the major site for S-glutathionylation, and 4) the Kir6.1/SUR2B channel is activated in a PKA-dependent manner by VIP that has been previously shown to alleviate oxidative stress.
5

Efeitos redox e protetores do pré-condicionamento isquêmico e da abertura do canal mitocondrial de potássio sensível a ATP contra morte celular por isquemia e reperfusão cardíaca / Redox and Protective Effects of Ischemic Preconditioning and Mitochondrial ATP-Sensitive K+ Channels Against Cardiac Cell Death Promoted by Ischemia and Reperfusion

Héberty di Tarso Fernandes Facundo 22 March 2007 (has links)
Eventos isquêmicos seguidos por reperfusão levam ao dano celular e mitocondrial devido à abertura do poro de transição de permeabilidade mitocondrial (TPM). Todavia, o pré-condicionamento evita o dano celular por isquemia e reperfusão. Esse efeito protetor é semelhante ao obtido pela abertura do canal mitocondrial de potássio sensível a ATP (mitoKATP). Aqui, nós mostramos os mecanismos de sinalização que ativam o mitoKATP durante o pré-condicionamento, o papel redox destes canais e seu conseqüente mecanismo protetor. Usando células cardíacas HL-1, nós demonstramos que aumentos em espécies reativas de oxigênio (EROs) observadas durante o pré-condicionamento não foram revertidos por antagonistas do mitoKATP, que significativamente evitaram a proteção pelo pré-condicionamento. Isso sugere que essas espécies são formadas anteriormente à abertura do canal. Consistente com essa hipótese, a adição de catalase a corações perfundidos de rato e a células HL-1 promove reversão dos efeitos benéficos do pré-condicionamento, mas não do diazóxido (um agonista do mitoKATP). Por outro lado, 2-mercaptopropionil glicina preveniu a cardioproteção em ambos os casos, sugerindo que este composto deve apresentar outros efeitos além de antioxidante. De fato, verificamos que agentes redutores tiólicos interferem na ativação do mitoKATP mediada pelo diazóxido em mitocôndrias isoladas de coração de rato. Examinando como o mitoKATP pode ser ativado durante o pré-condicionamento, constatamos que EROs endógenas e exógenas fortemente ativaram o mitoKATP, sugerindo que o moderado aumento nas EROs durante o pré-condicionamento pode ativar esse canal. Uma vez ativado, o canal preveniu as condições (captação de Ca2+ e formação de EROs) que favorecem a ocorrência de TPM em situação de isquemia. A atividade deste canal também leva à diminuição de EROs gerados fisiologicamente ou durante períodos de isquemia e reperfusão, evitando o dano celular conseqüente. Este fato não envolveu nenhum aumento nos sistemas de remoção de oxidantes. Por outro lado, a inibição da TPM, usando ciclosporina A, preveniu o estresse oxidativo somente durante a reperfusão, mas protegeu as células de maneira indistinguível da abertura do mitoKATP. Juntos, nossos resultados sugerem que o mitoKATP age como um sensor para as EROs que diminui a sua geração em resposta a níveis aumentados de oxidantes. Em conseqüência, estes canais regulam o balanço redox em condições fisiológicas e previnem o estresse oxidativo em condições patológicas, inibindo com isso a ocorrência de TPM e morte celular isquêmica. / Ischemia followed by reperfusion results in impairment of cellular and mitochondrial functionality due to opening of mitochondrial permeability transition (MPT) pores. Nevertheless, preconditioning rescues cells from ischemic damage. Mitochondrial ATP-sensitive K+ channel (mitoKATP) opening also prevents cardiac ischemic cell death. Here we show the signaling mechanisms that activate mitoKATP during preconditioning, the redox role of these channels and consequent protective mechanisms. Using cardiac HL-1 cells, we found that increases in reactive oxygen species (ROS) observed during preconditioning were not inhibited by mitoKATP antagonists, although these drugs significantly avoided the protection afforded by preconditioning, suggesting their activation occurrs upstream of channel activity. Consistent with this, catalase addition to perfused rat hearts and HL-1 cells reversed the beneficial effects of preconditioning, but not of diazoxide (a mitoKATP agonist). On the other hand, 2-mercaptopropionylglycine prevented cardioprotection in both cases, suggesting this compound may present effects other than scavenging ROS. Indeed, thiol reducing agents impaired diazoxide-mediated activation of mitoKATP in isolated rat heart mitochondria. We found that endogenous or exogenous ROS strongly enhanced mitoKATP activity, suggesting that moderate increments in ROS release during preconditioning may activate mitoKATP. Furthermore, mitoKATP prevented conditions (Ca2+ uptake and ROS formation) that favor the opening of MPT pores under ischemic conditions. MitoKATP opening decreased ROS generation physiologically and during both ischemia and reperfusion, consequently avoiding cellular damage. This prevention does not involve an increase in oxidant removal systems. On the other hand, the inhibition of MPT, using cyclosporin A, prevented oxidative stress only during simulated reperfusion, but protected cells in a manner indistinguishable from mitoKATP opening. Collectively, our results suggest that mitoKATP acts as a ROS sensor that decreases mitochondrial ROS generation in response to enhanced local levels of oxidants. As a result, these channels regulate mitochondrial redox state under physiological conditions and prevent oxidative stress under pathological conditions, inhibiting MPT opening and ischemic cardiac damage.

Page generated in 0.054 seconds