• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 165
  • 71
  • 31
  • 18
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 584
  • 82
  • 81
  • 56
  • 47
  • 43
  • 37
  • 35
  • 33
  • 32
  • 29
  • 29
  • 28
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Waterflood and Enhanced Oil Recovery Studies using Saline Water and Dilute Surfactants in Carbonate Reservoirs

Alotaibi, Mohammed 2011 December 1900 (has links)
Water injection has been practiced to displace the hydrocarbons towards adjacent wells and to support the reservoir pressure at or above the bubble point. Recently, waterflooding in sandstone reservoirs, as secondary and tertiary modes, proved to decrease the residual oil saturation. In calcareous rocks, water from various resources (deep formation, seawater, shallow beds, lakes and rivers) is generally injected in different oil fields. The ions interactions between water molecules, salts ions, oil components, and carbonate minerals are still ambiguous. Various substances are usually added before or during water injection to enhance oil recovery such as dilute surfactant. Various methods were used including surface charge (zeta potential), static and dynamic contact angle, core flooding, inductively coupled plasma spectrometry, CAT scan, and geochemical simulation. Limestone and dolomite particles were prepared at different wettability conditions to mimic the actual carbonate reservoirs. In addition to seawater and dilute seawater (50, 20, 10, and 1 vol%), formation brine, shallow aquifer water, deionized water and different crude oil samples were used throughout this study. The crude oil/water/carbonates interactions were also investigated using short and long (50 cm) limestone and dolomite rocks at different wettability and temperature conditions. The aqueous ion interactions were extensively monitored via measuring their concentrations using advanced analytical techniques. The activity of the free ions, complexes, and ion pairs in aqueous solutions were simulated at high temperatures and pressures using OLI electrolyte simulation software. Dilute seawater decreased the residual oil saturation in some of the coreflood tests. Hydration and dehydration processes through decreasing and increasing salinity showed no impact on calcite wettability. Effect of individual ions (Ca, Mg, and Na) and dilute seawater injection on oil recovery was insignificant in compare to the dilute surfactant solutions (0.1 wt%). The reaction mechanisms were confirmed to be adsorption of hydroxide ions, complexes and ion pairs at the interface which subsequently altered the surface potential from positive to negative. Results in this study indicate multistage waterflooding can enhance oil recovery in the field under certain conditions. Mixed streams simulation results suggest unexpected ions interactions (NaCO3-1, HSO4-1, NaSO4-1 and SO4-2) with various activities trends especially at high temperatures.
252

MIXED SURFACTANT SYSTEMS: THERMODYNAMICS AND APPLICATIONS IN METAL OXIDE IMPRINTING

Joshi, Suvid 01 January 2014 (has links)
In this work we study mixtures of cationic surfactant (CTAB) and sugar based surfactant(s) (octyl beta-D-glucopyranoside (C8G1), dodecyl maltoside (C12G2) and octyl beta-D-xylopyranoside (C8X1)) to understand the non-ideal thermodynamic behavior of the mixtures of cationic and non-ionic surfactants in water and synthesis of imprinted materials. The thermodynamics of micellization, mixing and dilution of these systems are studied using Isothermal Titration Calorimetry (ITC) and the experimental data obtained are modeled with a pseudo-phase separation model with non-ideal mixing described by regular solution theory. It is shown that a model accounting for enthalpy of demicellization and enthalpy of dilution based on McMillan-Mayer model is able to fit ITC data set for CTAB-C8G1 system with varying mole fractions. In addition to measuring non-ideal mixing behavior, mixtures of cationic and saccharide-based surfactants are of interest for the molecular imprinting of oxide materials. Mixtures of CTAB and either C8G1 or C8X1 are utilized to prepare nonporous adsorbent materials which act as selective adsorbents towards the headgroup of the saccharide surfactant. The approach is based on the Stöber silica particle synthesis process in which surfactants are added to soft particles present at the onset of turbidity to imprint their surface. This approach is shown to yield particles displaying selective adsorption for sugars with different number of carbons, but also provide enantioselective adsorption of targeted saccharides. Enantioselectivity of D-glucose, D-xylose and D-maltose is demonstrated by imprinting with C8G1, C8X1 and C12G2, respectively. The imprinting technique provides the first example of selective adsorption based on non-covalent imprinting of silica for sugars. The mixed surfactant are also used to synthesize templated porous materials incorporating titanium which are used for epoxidation catalysis. The porous materials obtained have high surface area, uniform pore sizes in the mesopore range, and provided high selectivity and activity towards epoxidation of styrene. Titanosilicate thin films are also synthesized using cationic and saccharide surfactant mixtures to understand the incorporation of the titanium into the porous material. It is demonstrated that large amounts of isolated, tetracoordinated titanium sites can be incorporated into mesoporous silica-based materials via the complexation of the titanium precursor with a saccharide-based surfactant.
253

EFFECT OF IONIC SURFACTANTS ON ELECTROSTATIC CHARGING OF SPRAY DROPLETS

Warren, Mark T. 01 January 2012 (has links)
Dust capture for small coal particles (<2.5µm) can be improved if one takes advantage of electrostatic charges that resides on the surface of coal dust particles and on the surface of water spray droplets used to capture coal dust. Traditional dust capture methods that use water sprays are ineffective in capturing small dust particles since the motion of small dust particles is governed by electrostatic forces. If additives such as ionic surfactants could be added to water that would enhance the surface charge on water spray droplets, dust capture with water sprays could be improved. The results presented show that n-sodium octyl sulfate causes the greatest charge enhancement versus the longer chained n-sodium dodecyl sulfate and n-sodium octadecyl sulfate. This can be explained by considering the factors that lead to droplet charge enhancement. Those factors are the mass of surfactant ions at the droplet surface, and the diffusion rate of the surfactant ions from the bulk droplet to the surface of the droplet. Sodium octyl sulfate will have a faster diffusion rate to the droplet surface because of its relatively short length, and will also maximize the mass balance of surfactant ions at the drop surface.
254

Phytanyl substituted asymmetric gemini surfactant-based transfection vectors for gene therapy

Wang, Haitang January 2013 (has links)
To achieve successful gene therapy, safe and efficient gene delivery vectors are needed. As an alternative to viral vectors, non-viral vectors, incorporating compounds such as cationic polymers and lipids have been widely studied. Much effort has been made to enhance transgene delivery efficiency, such as development of more effective cationic lipids or polymers, optimization of transfection formulations, and investigation on structural-activity of delivery vectors. Gemini surfactant, consisting of two surfactant monomers linked by a spacer group, is a thrust research area for gene therapy as non-viral vectors due to their high stability, longer storage on shelves, easiness to produce. A series of phytanyl substituted asymmetric gemini surfactants, phy-3-m (m = 12, 16, and 18) and phy-7NH-m (m = 12, 16, and 18), were rationally designed and synthesized. Due to the bulky nature and increased hydrophobicity of phytanyl branch, phy-3-m surfactants showed much lower values of critical micelle concentration (CMC) compared to their corresponding symmetric m-3-m. Particle size and transmission electron microscopy (TEM) imaging indicate that this type of gemini surfactants tends to form stacked bilayers rather than spherical or rod-like micelles which are typically observed in gemini surfactants with shorter spacers. Phy-3-m surfactants have higher degree of micelle ionization, indicating that the counter ions of the gemini surfactants can be easily replaced by other anionic ions, such as DNA, which is an advantage of phy-3-m used as transgene vectors. To evaluate transfection ability, transfection assays were carried out in OVCAR-3 cells. Transfection complexes formed by a plasmid pVGtelRL, coding enhanced green fluorescence protein (EGFP) gene, phy-3-m, and a neutral lipid, 1,2-Dioleyl-sn-glycerophosphatidylethanolamine (DOPE), at the charge ratios (+/-) of 2:1, 5:1, 10:1, and 20:1, were incubated with OVCAR-3 cells. Treated cells at all charge ratios except 20:1 showed EGFP signals under fluorescence microscopy. Meanwhile, EGFP expression and cell toxicity was quantified using fluorescence-activated cell sorting (FACS). For each gemini surfactant complex, the transfection efficiency and cytotoxicity go through a maximum, occurring at different values of the charge ratio. Considering both transfection efficiency and cytotoxicity, the optimal charge ratio to formulate the complexes containing phy-3-m was found to be 5:1 for in vitro transfection. Compared to a positive control, 16-3-16, phy-3-m showed higher transfection ability and lower cytotoxicity to OVCAR-3 cells. Initial characterization of transfection complexes was investigated by measuring particle size and zeta potential. At all charge ratios, transfection complexes were positively charged, and greater than +30 mV at 5:1 and 10:1, indicating that the complexes would be stable in solution at the ratio above 2:1. Transfection complexes were larger at lower charge ratio, but particle size dropped with increasing charge ratio (+/-). Comparing particle size and zeta potential with transfection efficiency, no correlation between size/zeta potential and transfection ability was observed. The larger particles may enter cells through caveolin-mediated pathway or phagocytosis, and smaller ones through a clathrin-mediated endocytosis. In addition, phase structures of the complexes were investigated using small angle X-ray scattering (SAXS). The complexes containing phy-3-m gemini surfactants were found to be able to adopt multiple phase structures, such as L, HII, and other highly ordered unidentified phase structures. By contrast, L structure was dominant in the transfection complexes formed by 16-3-16. The ability of phy-3-m system to adopt multiple phases appears correlated with their higher transfection efficiency in OVCAR-3 cells.
255

The Experimental Evaluation of Environmentally Friendly Cutting Fluids in Micro-Milling

Zhang, Yanqiao 30 August 2013 (has links)
In manufacturing, cutting fluids promote machining performance by removing heat, lubricating the cutting zone, flushing away chips, and preventing in process corrosion. To synthetize conventional metalworking fluids (MWFs), aside from choosing from a selection of base oils, an array of additives are also typically added. In traditional cutting fluid applications, the cost of waste fluid treatment is enormous. Moreover, the treatment is not always effective and disposal may lead to unexpected environmental contamination. The bacteria and chemical elements in the waste liquids may also introduce health and safety concerns. For the milling process at the micro-scale, i.e., micro-milling, traditional flood cooling may not be suitable. Since the cutting zone between the tool flank and workpiece is in the order of micrometers, the liquid surface tension of flood coolant would impede effective cooling and lubrication of the cutting fluid especially at a high spindle speed for tools. So for micro-milling, some researchers have tried to use minimum quantity lubrication method to apply cutting fluids. Other semi-dry methods like atomization method based on an ultrasonic atomizer have also been tested. However, even though these systems are able to decrease the amount of cutting fluids, the atomization of conventional cutting fluids with harmful surfactants (especially water miscible MWFs) and additives inside would still pose problems related to health hazard and contamination. Thus, new systems and/or green cutting fluids that eliminate the use of undesired surfactants or additives need to be developed. In this thesis, efforts to solve these problems for micro-milling operations are presented. Firstly, canola oil is selected and used to be emulsified in distilled water through ultrasonic atomization without any surfactant. Then, the emulsified water and oil solution is applied as cutting fluid in micro-milling, and the cutting performance results are compared to those with dry machining and traditional cutting fluid – 5% TRIM aqueous solution. The experimental results show that smaller chip thickness, and burr amount are observed with canola oil-in-water emulsion compared to conventional MWF. Reduction of almost 30% in cutting forces has also been achieved. Secondly, development of a new atomization-based cutting fluid system is introduced. Both cooling and lubricating capabilities of the cutting fluids are achieved using air-mixed water and oil mists, requiring no surfactants. Experiments are then conducted to evaluate the new system and the air-mixed jet of independently atomized water and oil sprays and compared to results with water only, oil only, and conventional cutting fluid (5% TRIM) conditions. The results reveal the mixture of water and oil leads to best performance in cooling and lubrication during micro-milling. The new system is proved to be effective in cooling and lubricating the cutting zone for both Al6061 and steel 1018. This atomization system is considered as a novel application method to apply totally green cutting fluids. Finally, a novel environmentally friendly additive was added to conventional cutting fluids. In this thesis, lignin powder obtained from wood is considered as one kind of these “green” additives. It is firstly tried to be dissolved in 5% TRIM aqueous solutions in 8 different concentrations through injection and atomization methods. Then, those lignin containing cutting fluids are used to run micro-milling experiments and compared with 5% TRIM. Nine MWFs are all nebulized by a nebulizer to cool and lubricate the workpiece. The results show that the concentration of 0.015% lignin leads to the least cutting forces, tool wear and burrs. The obtained solution (f) with 0.15% lignin inside causes cutting forces that are just 50% in value of those with 5% TRIM. Considering lignin’s anti-oxidative characteristic and its performance in improving machining processes, it is a promising additive in MWFs. / Graduate / 0346 / 0548 / yanqiaoz@uvic.ca
256

Interfacial effects on aqueous sonochemistry and sonoluminescence

Sostaric, Joe Zeljko Unknown Date (has links) (PDF)
The dissolution of quantum sized CdS and MnO2 particles in water was conducted using 20 kHz ultrasound. CdS particles were found to dissolve chemically via an oxidation process while MnO2 particles dissolved via a reductive process. It was found that the dissolution of the colloids could be controlled via the addition of surface active chemicals to solution and by varying the saturation gas type. In the presence of Na2S or propan-2-ol and argon gas, the dissolution of CdS was inhibited, whereas the addition of alcohols (methanol, ethanol, propan-2-ol, butan-1-ol and pentan-1-ol) to the MnO2 system led to an increase in the amount of dissolution for a given time of sonication. This increase in dissolution was found to be dependent on the ability of the surface active radical scavenger to accumulate around the bubble interface during the cavitation process. Eventually, at higher alcohol concentration there was a plateau or a limiting value reached for the efficiency of colloid dissolution which was common for each alcohol. (For complete abstract open document)
257

Respiratory distress syndrome : aspects of inhaled nitric oxide surfactant and nasal CPAP /

Lindwall, Robert B. I., January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 5 uppsatser.
258

Lignin degradation : long-term effects of nitrogen addition on decomposition of forest soil organic matter /

Sjöberg, Gudrun, January 2003 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv., 2003. / Härtill 3 uppsatser.
259

A p2sH-NMR study of interactions in model membranes containing pulmonary surfactant proteins SP-B and SP-C /

Dico, Awel Seid, January 1998 (has links)
Thesis (Ph. D.)--Memorial University of Newfoundland, 1998. / Bibliography: leaves 93-101.
260

Analyse d'une séparation par membrane liquide en colonne à pulvérisation : influence des additifs.

Bouchez, Dominique, January 1900 (has links)
Th. doct.-ing.--Toulouse, I.N.P., 1978. N°: 9.

Page generated in 0.0288 seconds