71 |
Prediction for the Domain of RNA with Support Vector MachineLiu, Chu-Kai 01 September 2011 (has links)
The three-domain system is a biological classification of RNA. In bioinformatics, predicting the domain of RNA is helpful in the research of DNA and protein. By reviewing the related literatures, we notice that many researches are conducted for domain prediction with only the primary structure. However, compared with the primary structure, the secondary structure of an RNA contains more discriminative information. Therefore, we propose an SVM-based prediction algorithm that considers both the features of primary and secondary structures.
In our experiment, we adopt 1606 RNA sequences from RNase P, 5S ribosomal RNA and snoRNA databases. The experimental results show that our algorithm achieves 96.39%, 95.70%, and 95.46% accuracies by combining three softwares of secondary structure prediction, pknotsRG, NUPACK, and RNAstructure, respectively. Thus, our method is a new effective approach for predicting the domain of an RNA sequence. The software implementation of our method, named RDP (RNA Domain Prediction), is available on the Web http://bio.cse.nsysu.edu.tw/RDP/.
|
72 |
Graph-based Support Vector Machines for Patient Response Prediction Using Pathway and Gene Expression DataHuang, Norman Jason 14 October 2013 (has links)
Over the past decade, multiple function genomic datasets studying chromosomal aberrations and their downstream implications on gene expression have accumulated across a variety of cancer types. With the majority being paired copy number/gene expression profiles originating from the same patient groups, this time frame has also induced a wealth of integrative attempts in hope that the concurrent analysis between both genomic structures will result in optimized downstream results. Borrowing the concept, this dissertation presents a novel contribution to the development of statistical methodology for integrating copy number and gene expression data for purposes of predicting treatment response in multiple myeloma patients.
|
73 |
Development and Evaluation of Model-Based Misfire Detection AlgorithmTherén, Linus January 2014 (has links)
This report present the work to develop a misfire detection algorithm for onboard diagnostics on a spark ignited combustion engine. The work is based on a previous developed model-based detection algorithm, created to meet more stringent future legislation and reduce the cost of calibration. In the existing approach a simplified engine model is used to estimate the torque from the flywheel angular velocity, and the algorithm can detect misfires in various conditions. The main contribution in this work, is further development of the misfire detection algorithm with focus on improving the handling of disturbances and variations between different vehicles. The resulting detection algorithm can be automatically calibrated with training data and manage disturbances such as manufacturing errors on the flywheel and torsional vibrations in the crankshaft occurring after a misfire. Furthermore a robustness analysis with different engine configurations is carried out, and the algorithm is evaluated with the Kullback- Leibler divergence correlated to the diagnosis requirements. In the validation, data from vehicles with four cylinder engines are used and the algorithm show good performance with few false alarms and missed detections.
|
74 |
Direction Estimation of Pedestrian from ImagesShimizu, Hiroaki, Poggio, Tomaso 27 August 2003 (has links)
The capability of estimating the walking direction of people would be useful in many applications such as those involving autonomous cars and robots.We introduce an approach for estimating the walking direction of people from images, based on learning the correct classification of a still image by using SVMs. We find that the performance of the system can be improved by classifying each image of a walking sequence and combining the outputs of the classifier.Experiments were performed to evaluate our system and estimate the trade-off between number of images in walking sequences and performance.
|
75 |
Boosting a Biologically Inspired Local Descriptor for Geometry-free Face and Full Multi-view 3D Object RecognitionYokono, Jerry Jun, Poggio, Tomaso 07 July 2005 (has links)
Object recognition systems relying on local descriptors are increasingly used because of their perceived robustness with respect to occlusions and to global geometrical deformations. Descriptors of this type -- based on a set of oriented Gaussian derivative filters -- are used in our recognition system. In this paper, we explore a multi-view 3D object recognition system that does not use explicit geometrical information. The basic idea is to find discriminant features to describe an object across different views. A boosting procedure is used to select features out of a large feature pool of local features collected from the positive training examples. We describe experiments on face images with excellent recognition rate.
|
76 |
Diagnosis of autonomous vehicles using machine learningHossain, Adnan January 2018 (has links)
With autonomous trucks on the road where the driver is absent requires new diagnostic methods. The driver possess several abilities which a machine does not. In this thesis, the use of machine learning as a method was investigated. A more concrete problem description was formed where the main objective was detecting anomalies in wheel configurations. More specifically, the machine learning model was used to detect incorrect wheel settings. Three different algorithms was used, SVM, LDA and logistic regression. Overall, the classifier predicts with high accuracy supporting that machine learning can be used for diagnosing autonomous vehicles.
|
77 |
Robust Margin Based Classifiers For Small Sample DataJanuary 2011 (has links)
abstract: In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably more important than any other data type, because the data point could be a cancer patient or the classication decision could help determine what gene might be over expressed and perhaps a cause of cancer. These mis-classications are typically higher in the presence of outlier data points. The aim of this thesis is to develop a maximum margin classier that is suited to address the lack of robustness of discriminant based classiers (like the Support Vector Machine (SVM)) to noise and outliers. The underlying notion is to adopt and develop a natural loss function that is more robust to outliers and more representative of the true loss function of the data. It is demonstrated experimentally that SVM's are indeed susceptible to outliers and that the new classier developed, here coined as Robust-SVM (RSVM), is superior to all studied classier on the synthetic datasets. It is superior to the SVM in both the synthetic and experimental data from biomedical studies and is competent to a classier derived on similar lines when real life data examples are considered. / Dissertation/Thesis / Source Code for RSVM(MATLAB) / Presentation on RSVM / M.S. Computer Science 2011
|
78 |
Machine learning and brain imaging in psychosisZarogianni, Eleni January 2016 (has links)
Over the past years early detection and intervention in schizophrenia have become a major objective in psychiatry. Early intervention strategies are intended to identify and treat psychosis prior to fulfilling diagnostic criteria for the disorder. To this aim, reliable early diagnostic biomarkers are needed in order to identify a high-risk state for psychosis and also predict transition to frank psychosis in those high-risk individuals destined to develop the disorder. Recently, machine learning methods have been successfully applied in the diagnostic classification of schizophrenia and in predicting transition to psychosis at an individual level based on magnetic resonance imaging (MRI) data and also neurocognitive variables. This work investigates the application of machine learning methods for the early identification of schizophrenia in subjects at high risk for developing the disorder. The dataset used in this work involves data from the Edinburgh High Risk Study (EHRS), which examined individuals at a heightened risk for developing schizophrenia for familial reasons, and the FePsy (Fruherkennung von Psychosen) study that was conducted in Basel and involves subjects at a clinical high-risk state for psychosis. The overriding aim of this thesis was to use machine learning, and specifically Support Vector Machine (SVM), in order to identify predictors of transition to psychosis in high-risk individuals, using baseline structural MRI data. There are three aims pertaining to this main one. (i) Firstly, our aim was to examine the feasibility of distinguishing at baseline those individuals who later developed schizophrenia from those who did not, yet had psychotic symptoms using SVM and baseline data from the EHRS study. (ii) Secondly, we intended to examine if our classification approach could generalize to clinical high-risk cohorts, using neuroanatomical data from the FePsy study. (iii) In a more exploratory context, we have also examined the diagnostic performance of our classifier by pooling the two datasets together. With regards to the first aim, our findings suggest that the early prediction of schizophrenia is feasible using a MRI-based linear SVM classifier operating at the single-subject level. Additionally, we have shown that the combination of baseline neuroanatomical data with measures of neurocognitive functioning and schizotypal cognition can improve predictive performance. The application of our pattern classification approach to baseline structural MRI data from the FePsy study highly replicated our previous findings. Our classification method identified spatially distributed networks that discriminate at baseline between subjects that later developed schizophrenia and other related psychoses and those that did not. Finally, a preliminary classification analysis using pooled datasets from the EHRS and the FePsy study supports the existence of a neuroanatomical pattern that differentiates between groups of high-risk subjects that develop psychosis against those who do not across research sites and despite any between-sites differences. Taken together, our findings suggest that machine learning is capable of distinguishing between cohorts of high risk subjects that later convert to psychosis and those that do not based on patterns of structural abnormalities that are present before disease onset. Our findings have some clinical implications in that machine learning-based approaches could advise or complement clinical decision-making in early intervention strategies in schizophrenia and related psychoses. Future work will be, however, required to tackle issues of reproducibility of early diagnostic biomarkers across research sites, where different assessment criteria and imaging equipment and protocols are used. In addition, future projects may also examine the diagnostic and prognostic value of multimodal neuroimaging data, possibly combined with other clinical, neurocognitive, genetic information.
|
79 |
Modelo de Predição para análise comparativa de Técnicas Neuro-Fuzzy e de Regressão.OLIVEIRA, A. B. 12 February 2010 (has links)
Made available in DSpace on 2016-08-29T15:33:12Z (GMT). No. of bitstreams: 1
tese_3521_.pdf: 2782962 bytes, checksum: d4b2294e5ee9ab86b7a35aec083af692 (MD5)
Previous issue date: 2010-02-12 / Os Modelos de Predição implementados pelos algoritmos de Aprendizagem de Máquina advindos como linha de pesquisa da Inteligência Computacional são resultantes de pesquisas e investigações empíricas em dados do mundo real. Neste contexto; estes modelos são extraídos para comparação de duas grandes técnicas de aprendizagem de máquina Redes Neuro-Fuzzy e de Regressão aplicadas no intuito de estimar um parâmetro de qualidade do produto em um ambiente industrial sob processo contínuo.
Heuristicamente; esses Modelos de Predição são aplicados e comparados em um mesmo ambiente de simulação com intuito de mensurar os níveis de adequação dos mesmos, o poder de desempenho e generalização dos dados empíricos que compõem este cenário (ambiente industrial de mineração).
|
80 |
Non-Linear Classification as a Tool for Predicting Tennis Matches / Non-Linear Classification as a Tool for Predicting Tennis MatchesHostačný, Jakub January 2018 (has links)
Charles University Faculty of Social Sciences Institute of Economic Studies MASTER'S THESIS Non-Linear Classification as a Tool for Predicting Tennis Matches Author: Be. Jakub Hostacny Supervisor: RNDr. Matus Baniar Academic Year: 2017/2018 Abstract In this thesis, we examine the prediction accuracy and the betting performance of four machine learning algorithms applied to men tennis matches - penalized logistic regression, random forest, boosted trees, and artificial neural networks. To do so, we employ 40 310 ATP matches played during 1/2001-10/2016 and 342 input features. As for the prediction accuracy, our models outperform current state-of-art models for both non-grand-slam (69%) and grand slam matches (79%). Concerning the overall accuracy rate, all model specifications beat backing a better-ranked player, while the majority also surpasses backing a bookmaker's favourite. As far as the betting performance is concerned, we develop six profitable betting strategies for betting on favourites applied to non-grand-slam with ROI ranging from 0.8% to 6.5%. Also, we identify ten profitable betting strategies for betting on favourites applied to grand slam matches with ROI fluctuating between 0.7% and 9.3%. We beat both bench mark rules - backing a better-ranked player as well as backing a bookmaker's...
|
Page generated in 0.0272 seconds