Spelling suggestions: "subject:"saccharomyces cerevisiae.this"" "subject:"saccharomyces cerevisiaecells""
1 |
Function and regulation of two methylenetetrahydrofolate reductase isozymes in Saccharomyces cerevisiaeChan, Sherwin Yum-Yat, 1973- 06 July 2011 (has links)
Not available / text
|
2 |
The role of carnitine acetyltransferases in the metabolism of Saccharomyces cerevisiaeKroppenstedt, Sven 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2003. / ENGLISH ABSTRACT: L-carnitine is a compound with a long history in biochemistry. It plays an important
role in mammals, where many functions have been attributed to it. Those functions
include the p-oxidation of long-chain fatty acids, the regulation of the free CoASH/
Acyl-CoA ratio and the translocation of acetyl units into mitochondria. Carnitine is
also found in lower eukaryotic organisms. However, in contrast to the multiple roles it
plays in mammalian cells, its action appears to be restricted to the transport of
activated acyl residues across intracellular membranes in the lower eukaryotes. In
the yeast Saccharomyces cere visiae , the role of carnitine consists mainly of the
transfer of activated acetyl residues from the peroxisome and cytoplasm to the
mitochondria. This process is referred to as the carnitine shuttle. This system
involves the transfer of the acetyl moiety of acetyl-CoA, which cannot cross
organellar membranes, to a molecule of carnitine. Subsequently, the acetylcarnitine
is transported across membranes into the mitochondria, where the reverse transfer
of the acetyl group to a molecule of free CoA occurs for further metabolism. Carnitine
acetyl transferases (CATs) are the enzymes responsible for catalysing the transfer of
the activated acetyl group of acetyl-CoA to carnitine as well as for the reverse
reaction.
In the yeast S. cerevisiae, three CAT enzymes, encoded by the genes CAT2,
YAT1 and YAT2, have been identified. Genetic data suggest, that despite the high
sequence similarity, each of the genes encodes for a highly specific activity that is
part of the carnitine shuttle. So far, the specific function of any of the three CAT
enzymes has been elucidated only partially.
The literature review focuses mainly on the importance of the carnitine system in
mammals. After discussing the discovery and biosyntheses of carnitine, the
enzymatic background of and molecular studies on the carnitine acyltransferases are
described.
The experimental section focuses on elucidating the physiological roles and
cellular localisation of the three carnitine acetyltransferase of S. cere visia e. We
developed a novel enzymatic assay to study CAT activity in vivo. By C-terminal
tagging with a green fluorescent protein, we localised the three CAT enzymes.
However, all our genetic attempts to reveal specific roles for and functions of
these enzymes were unsuccessful. The overexpression of any of the CAT genes
could not cross-complement the growth defect of other CAT mutant strains. No
phenotypical difference could be observed between strains carrying single, double
and triple deletions of the CAT genes. Furthermore, the expression of the
Schizosaccharomyces pombe dicarboxylic acid transporter can complement the
deletion of the peroxisomal citrate synthase, but has no effect on the carnitine shuttle
per se. Our data nevertheless suggest that Cat2p is the enzyme mainly responsible
for the forward reaction, e.g. the formation of acetylcarnitine and free CoA-SH from acetyl-CoA and carnitine, whereas Yat1 pand Yat2p may be required mainly for the
reverse reaction. / AFRIKAANSE OPSOMMING: L-karnitien is 'n verbinding met 'n lang geskiedenis in die biochemie-veld. Dit speel 'n
belangrike rol in soogdiere, waar verskeie funksies daaraan toegeskryf word. Dié
funksies sluit in die p-oksidasie van lang-ketting-vetsure, die regulering van die vrye
KoA-SH-tot-asiel-KoA-verhouding en die oordrag van asetieleenhede na die
mitochondria. Karnitien word ook in laer eukariotiese organismes gevind. In
teenstelling met die verskeidenheid rolle wat dit in soogdierselle vervul, is die funksie
in laer eukariote tot die transport van geaktiveerde asetielderivate oor intrasellulêre
membrane beperk. In die gis Saccharomyces cerevisiae is die funksie van karnitien
meestal beperk tot die vervoer van geaktiveerde asetielresidu's vanaf die sitoplasma
en piroksisome na mitochondria, 'n proses wat as die "karnitiensiklus" bekend staan.
Die proses behels die oordrag van die asetielgedeelte van asetiel-KoA, wat nie oor
organelmembrane kan beweeg nie, na 'n molekuul van karnitien. Gevolglik word die
asetielkarnitien oor die membraan na die mitochondria vervoer, waar - met die oog
op verdere metabolisme - die omgekeerde oordrag van die asetielgroep na 'n vrye
molekuul van KoA plaasvind. Karnitienasetiel-transferases (KAT's) is die ensieme
wat verantwoordelik is vir die katalisering van die oordrag van die geaktiveerde
asetielgroepe van asetiel-KoA na karnitien, sowel as vir die omgekeerde reaksie.
In die gis S. cerevisiae is drie KAT-ensieme geïdentifiseer wat deur die gene
CAT2, YAT1 en YAT2 gekodeer word. Genetiese data dui daarop dat, ten spyte van
die hoë mate van homologie van die DNA-volgordes, elke geen vir 'n hoogs
spesifieke aktiwiteit, wat deel van die karnitiensiklus is, kodeer. Tot dusver is die
spesifieke funksie van die drie individuele KAT-ensieme net gedeeltelik ontrafel.
Die literatuurstudie fokus hoofsaaklik op die belangrikheid van karnitiensisteme
in soogdiere. Na 'n bespreking van die ontdekking en biosintese van karnitien, word
die ensimatiese agtergrond en molekulêre studies van KAT's beskryf.
Die eksperimentele deel konsentreer op die ontrafelling van die fisiologiese rol
en intrasellulêre lokalisering van die drie KAT-ensieme van S. cerevisiae. Eerstens is
'n nuwe ensimatiese toets ontwikkel om KAT-aktiwiteit in vivo te bestudeer. Deur
C-terminale aanhegting van 'n groen fluoreserende proteïen kon die drie KATensieme
gelokaliseer word.
Daar kon egter nie met behulp van genetiese studies verder lig gewerp word op
die spesifieke rolle en funksies van hierdie KAT-ensieme nie. Die ooruitdrukking van
enige van die KAT-gene kon nie die groeidefek van ander KAT-mutantrasse
kruiskomplementeer nie. Geen fenotipiese verskil tussen rasse wat 'n enkel, dubbel
of trippel delesie van die KAT-gene bevat, kon waargeneem word nie. Verder kon die
uitdrukking van Schizosaccharomyces pombe se dikarboksielsuurtransporter die
delesie van die peroksisomale sitraatsintetase komplementeer, maar het dit as sulks
geen effek op die karnitiensiklus gehad nie. Die data wat deur hierdie studie verkry is, dui nogtans daarop dat Cat2p die ensiem is wat hoofsaaklik verantwoordelik is vir
die voorwaartse reaksie, met ander woorde die vorming van asetielkarnitien en vrye
KoH-SH van asetiel-KoA en karnitien, terwyl Yat1 p en Yat2p hoofsaaklik vir die
omgekeerde reaksie benodig word.
|
3 |
EFFECT OF EXCESS L-METHIONINE ON THE UTILIZATION OF CARBON-14-LABELED GLUCOSE BY SACCHAROMYCES CEREVISIAEO'Malley, Wynanda Moonen, 1920- January 1965 (has links)
No description available.
|
4 |
Cell-wall mechanical properties of Saccharomyces cerevisiae / by Alexander Evans Smith.Smith, Alexander Evans January 1999 (has links)
Bibliography: leaves 182-190. / xv, 190 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Develops a suitable approach to determining the fundamental cell-wall mechanical properties of single biological cells, by combining the single-cell compression experiment with a mechanical model to determine the cell-wall mechanical properties of the yeast Saccharomyces cerevisiae / Thesis (Ph.D.)--University of Adelaide, Dept. of Chemical Engineering, 1999
|
5 |
Contributions To The Kinetic Modeling Of Glycolytic Pathway In YeastSahin, Ceylan 01 March 2009 (has links) (PDF)
Being at the center of most metabolic pathways and also one of the best known pathways, the glycolytic pathway has been of interest to modeling studies. This study is composed of our attempts to model ethanolic fermentation by yeast through kinetic equations of glycolytic steps and its branches. Model was based totally on experimentally measured kinetics of enzymes and transport steps, either obtained in this study or from the literature.
Effect of ethanol on enzyme activities was tested in the range of ethanol 0 to 20% (v/v) in assay mixture. All enzymes were inhibited by ethanol to some degree and these inhibitions started at different ethanol concentrations, the least affected being the pyruvate kinase and the most inhibited ones being glycerol-3-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, phosphogluco kinase, and alcohol dehydrogenase (forward). Effect of temperature on the activities of enzymes was tested within 10-30 ° / C with five degrees of increments. Activation energies of enzymes were calculated using the Arrhenius equation. Activation energies of upper part of the glycolysis and the glycerol branch (glycerol-3-phosphate dehydrogenase) were relatively higher than that of lower part enzymes as well as the ethanol branch (alcohol dehydrogenase).
Results obtained from these in vitro studies were incorporated into the model as mathematical relations. Model output thus obtained was compared with results of experiments conducted at several temperatures and initial ethanol concentrations. Model could estimate general trend in ethanolic fermentation that fermentation is inhibited by increasing concentrations of ethanol. Decrease in glycerol yields at lower temperatures was also estimated by the model. However, model did not fit exactly to experimental results, especially at low temperature and high ethanol concentrations. This could be attributed to stress responses of cells under these conditions, which are not considered in the model.
|
6 |
Evaluation of evolutionary engineering strategies for the generation of novel wine yeast strains with improved metabolic characteristicsHorsch, Heidi K. 12 1900 (has links)
Thesis (PhD (Viticulture and Oenology. Wine Biotechnology))--Stellenbosch University, 2008. / The occurrence of sluggish and stuck fermentations continues to be a serious problem
in the global wine industry, leading to loss of product, low quality wines, cellar
management problems and consequently to significant financial losses. Comprehensive
research has shown that many different factors can act either in isolation, or more
commonly synergistically, to negatively affect fermentative activity of wine yeast strains
of the species Saccharomyces cerevisiae. The individual factors most commonly
referred to in the literature are various nutrient and oxygen limitations. However, other
factors have been shown to contribute to the problem. Because of the mostly synergistic
nature of the impacts, no single factor can usually be identified as the primary cause of
stuck fermentation.
In this study, several strategies to evolutionarily engineer wine yeast strains that are
expected to reduce the occurrence of stuck and sluggish fermentations are investigated.
In particular, the investigations focus on improving the ability of wine yeast to better
respond to two of the factors that commonly contribute to the occurrence of such
fermentations, nitrogen limitation and the development of an unfavorable ratio of
glucose and fructose during fermentation.
The evolutionary engineering strategies relied on mass-mating or mutagenesis of
successful commercial wine yeast strains to generate yeast populations of diverse
genetic backgrounds. These culture populations were then exposed to enrichment
procedures either in continuous or sequential batch cultivation conditions while applying
specific evolutionary selection pressures.
In one of the stragegies, yeast populations were subjected to continuous cultivation
under hexose, and especially fructose, limitation. The data show that the strains
selected after this procedure were usually able to out-compete the parental strains in
these selective conditions. However, the improved phenotype was not detectable when
strains were evaluated in laboratory scale wine fermentations.
In contrast, the selection procedure in continuous cultivation in nitrogen limiting
conditions proved to be highly efficient for the generation of yeast strains with higher
total fermentative capacity in low nitrogen musts.
Furthermore, yeast strains selected after mutagenesis and sequential batch cultivation
in synthetic musts with a very low glucose on fructose ratio showed a fructose specific
improvement in fermentative capacity. This phenotype, which corresponds to the
desired outcome, was also present in laboratory scale wine fermentations, where the
discrepancy between glucose and fructose utilization of the selected strains was
significantly reduced when compared to the parents.
Finally, a novel strategy for the rectification of stuck fermentations was adjusted to
industrial conditions. The strategy is based on the use of a natural isolate of the yeast
species Zygosaccharomyces bailii, which is known for its preference of fructose. This
process was successfully established and implemented in the wine industry.
|
Page generated in 0.0809 seconds