• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 10
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 1
  • Tagged with
  • 101
  • 101
  • 101
  • 29
  • 22
  • 17
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Staging of investment in desalination facilities and associated storage facilities.

Shuhaibar, Yousef Khalil,1941- January 1972 (has links)
The principal objective of water resources planning is generally recognized to be the satisfaction of the continually growing desires and requirements of a population for usable water. In long term planning of such resources, fulfillment of these needs at a minimum cost can be defined as the objective. The time-capacity relationship that describes the decision process for the arrival at an optimum and feasible construction schedule hold the answer to the decision question: how much to build and when. The application of the time-capacity approach is used in the problem of staging of investment in desalination capacity and associated storage facilities. The forward dynamic programming technique is utilized in the solution process. A preliminary analysis is performed, with artificial data, in the initial development of a decision rule governing , an idealistic model of an arid region. The area of study is assumed to depend solely on desalination of sea water for its supply of potable water, with no appreciable groundwater source available in the region. Desire for water is assumed to follow a linearly rising trend for a finite period into the future taken as the duration of the project. A more realistic set of data is later considered in the development of an optimal incrementation rule for the augmentation of desalination production. The State of Kuwait is considered as the area of study, and pertinent data were collected from that region. Rate of demand growth for water use is described here to follow an exponential trend resembling that of the projected population growth at an assumed rate of growth. Capital costs only are considered in the minimizing functional equation of the decision rule, and an appropriate discount rate is assumed in the obtainment of the present value of incurred costs. A spatial construction schedule is described by the solution algorithm which specifies the sizes of the required increments to production and their optimal time of erection. An economic analysis of the state of the art in storage facilities resulted in the elimination of storage capacity as a state variable in the dynamic program. The operational problems of desalination units in production are dealt with, all within the total supply system requirements of meeting the desired demand for fresh water. The capacities of the incrementation schedule of desalination plants are modified to accommodate the expected shortages due to the annual scheduled maintenance, forced outages and peaking of the water use curve due to seasonal variations. Technical data of actual plants in operation in Kuwait are analyzed to obtain the restrictions on the operational requirements of the production plants. The plants considered are of the multi-stage flash type (MSF) currently in use in Kuwait. Simulation of the production operation of the required units at every stage of incrementation is performed. The final costs of the modified supply system components are obtained in accordance with the assumed probability of meeting demand within the total number of simulations. The general solution algorithm is viewed in two interrelated parts. The first part produces the schedule of incrementation and construction of the necessary desalination units. The second part modifies these capacities to account for the operational and seasonal requirements of the project. The ultimate result is a schedule of modified capacities of production and a maintenance program for every unit in operation, with the effects of forced outages and peaking of the demand curve applied on each plant.
62

An investigation into the use of fluorinated hydrating agents in the desalination of industrial wastewater.

Petticrew, Cassandra. January 2011 (has links)
Salts in solution should be removed by desalination techniques to prevent equipment fouling and corrosion. Common desalination technologies are energy intensive such as Multi Stage Flash (MSF) distillation which requires 14.5 J/m3 (Ribeiro. J, 1996) of energy. Desalination technologies produce purified water and a concentrated salt solution, where the salt concentration is dependent on the desalination technology used. This work investigates gas hydrate technology as a possible desalination technology. Hydrates are composed of guest molecules and host molecules. Guest molecules may be in the form of a liquid or gas. During hydrate formation, host molecules, water, form a cage enclosing the guest molecule. Common hydrate formers or guest molecules such as; methane, ethane, propane and carbon dioxide are currently being investigated in literature, for use in gas hydrate desalination technology. Common hydrate formers form hydrates at low temperatures; below 288 K and high pressures; above 2 MPa. To increase the temperature and reduce the pressure at which gas hydrates form, commercially available hydrofluorocarbon hydrate formers such as R14, R32, R116, R134a, R152a, R218, R404a, R407c, R410a and R507 are preliminarily investigated in this work. The criteria for choosing the most suitable fluorine-based formers require the former to be: environmentally acceptable where it is approved by the Montreal Protocol; non-toxic where it has a low acute toxicity; non-flammable; chemically stable; a structure II hydrate to simplify the washing process; available in commercial quantities; low cost in comparison to other hydrate formers; compatible with standard materials and contain a high critical point for a large heat of vaporisation (McCormack and Andersen, 1995). Taking all these criteria into account, R134a was chosen for further investigation as a possible hydrate former. In this work, hydrate-liquid-vapour phase equilibrium measurements are conducted using the isochoric method with a static high pressure stainless steel equilibrium cell. The Combined Standard Uncertainty for the 0-1 MPa pressure transducer, 0-10 MPa pressure transducer and the Pt100 temperature probes are ±0.64 MPa, ±5.00 MPa and ±0.09 K respectively. Vapour pressure measurements for Hydrofluoropropyleneoxide, CO2, R22 and R134a were measured to verify the pressure and temperature calibrations. Hydrate test systems for R22 (1) + water (2) and R134a (1) + water (2) were measured to verify calibrations, equipment and procedures. New systems measured included R134a (1) + water (2) + {5wt%, 10wt% or 15wt%} NaCl (3). For the system R134 (1) + water (2) at 281 K the dissociation pressure is 0.269 MPa. However, addition of NaCl to the system resulted in a shift of the HVL equilibrium phase boundary to lower temperatures or higher pressures. The average shift in temperature between the system R134a (1) + water (2) containing no salt and the systems containing {5, 10 and 15} wt% NaCl are -1.9K, -4.8K and -8.1K respectively. In this work, the measured systems were modelled using two methods of approach. The first method is where hydrofluorocarbon hydrate former solubility is included, (Parrish et al., 1972) and the second is where hydrofluorocarbon hydrate former solubility is ignored, (Eslamimanesh et al., 2011). From these models, it is found that hydrofluorocarbon solubility could not be neglected. In this work, the hydrate phase was modelled using modifications of the van der Waals and Platteeuw model, (Parrish et al., 1972). The liquid and vapour phases are modelled using the Peng- Robinson equation of state with classical mixing rules (Peng, 1976). The electrolyte component is modelled using the Aasberg-Peterson model (Aasberg-Petersen et al., 1991) modified by Tohidi (Tohidi et al., 1995). The percent absolute average deviation (%AAD) for the systems, which includes solubility, is 0.41 for R22 (1) + water (2) and 0.33 for R134a (1) + water (2). For the system R134a (1) + water (2) + {5 wt%, 10 wt% or 15 wt%} NaCl (3) the % AAD is 5.14. Using the hydrate former, R134a, is insufficient to ensure gas hydrate technology is competitive with other desalination technologies. Hydrate dissociation temperature should be increased and pressure decreased further to ambient conditions. As evident in literature, promoters, such as cyclopentane, are recommended to be added to the system to shift the HLV equilibrium phase boundary as close to ambient conditions as possible. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2011.
63

Barometric distillation and the problem of non-condensable gases

Unknown Date (has links)
Barometric distillation is an alternative method of producing fresh water by desalination. This proposed process evaporates saline water at low pressure and consequently low temperature; low pressure conditions are achieved by use of barometric columns and condensation is by direct contact with a supply of fresh water that will be augmented by the distillate. Low-temperature sources of heat, such as the cooling water rejected by electrical power generating facilities, can supply this system with the latent heat of evaporation. Experiments are presented that show successful distillation with a temperature difference between evaporator and condenser smaller than 10ê C. Accumulation of dissolved gases coming out of solution, a classic problem in lowpressure distillation, is indirectly measured using a gas-tension sensor. The results of these experiments are used in an analysis of the specific energy required by a production process capable of producing 15 liters per hour. With a 20ê C difference, and neglecting latent heat, this analysis yields a specific energy of 1.85 kilowatt-hour per cubic meter, consumed by water pumping and by removal of non-condensable gases. / by Eiki Martinson. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010 / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
64

A numerical analysis of the hydrodynamic mixing characteristics of a rectangular versus a cylindrical mixing crystallizer tank for a membrane distillation apparatus

Smith, Everhardus Johannes January 2018 (has links)
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2018. / A membrane distillation crystallization (MDC) experimental setup was designed, constructed and commissioned with rectangular mixing crystallizer tanks. The advantages and disadvantages of a rectangular mixing tank are compared to the traditional cylindrical mixing tank with baffling by means of a computational fluid dynamic (CFD) analysis in Ansys Fluent. The effect of tank configuration and geometry on the hydrodynamic and mixing characteristics for efficient momentum, solid suspension, heat and mass transfer were investigated. The hydrodynamic conditions in a crystallizer-mixing tank determine the quality of fluid mixing essential for optimal crystallization. Forty-five degree pitched blade turbines (PBT) were used to provide the agitation in the stainless steel rectangular jacketed tanks. Clear polycarbonate replicas of the rectangular tanks were manufactured to visually observe the mixing process in the tanks. Silica particles were used to represent the calcium carbonate crystals in the experiment. The data gathered from these experiments showed that the tanks should be operated between 600 to 750 rpm in the CFD simulations to simulate partial to complete suspension. In the numerical simulations a rectangular tank was compared to a cylindrical tank with baffling of the same volume. The partial differential equations solved in the numerical simulation were the conservation of mass (continuity), conservation of momentum and additional turbulence equations. In order to solve the turbulent fluid flow characteristics, the industry standard two-equation model, namely the K-epsilon model was used. This model was refined by the addition of the Wen-Yu drag model, the Simonin turbulent dissipation and the Simonin et al. turbulence interaction models. The RANS based RNG (k-ε), derived from the instantaneous Navier-Stokes equation was selected as the preferred model to analyse the hydrodynamic flow fields in the tanks. The 3D sliding mesh method was used to compute a time accurate solution. The Eulerian-granular multiphase model was used to predict the degree of solids suspension in the tanks. The efficiency of mixing within the tank was measured by the tank’s ability to keep the crystals in suspension and preventing any particle from settling at the bottom for more than 1-2 second(s). The mixing tanks were initially loaded with 5% v/v, which equates to a loaded height of approximately 10 mm. The simulations were done with the use of the volume fraction function to visually observe the cloud height and gauge the homogeneity and distribution of the particulates within the fluid flow fields. The results from the experimental setup were compared to the CFD simulations to qualify the use of CFD simulations for the comparison of the geometrically different tanks. Lastly, the findings from the CFD simulations were used to compare the tanks and determine if the rectangular tank built for the MDC experiment perform satisfactorily to replace a standard cylindrical tank with baffling for this application.
65

Population estimates and projections for nuclear power plant safety analyses and evacuation plans : the Shoreham nuclear power station methodology

Donnelly, Kathleen A January 2010 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
66

Adelaide's future water supply : an assessment of alternatives

Manwaring, Edwin Albert. January 1980 (has links) (PDF)
Bibliography: leaves 118-127.
67

The study of pretreatment options for composite fouling of reverse osmosis membranes used in water treatment and production

Mustafa, Ghulam Mohammad, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Most common inorganic foulants in RO processes operating on brackish water are calcium carbonate, calcium sulphate and silica. However, silica fouling is the recovery limiting factor in RO system. Silica chemistry is complex and its degree of fouling strongly depends on the silica solubility and its polymerization under different operating conditions of RO process. In several studies carried out in batch and dynamic tests, the presence of polyvalent cations and supersaturation of silica in solutions were found to be the important factors (apart from pH and temperature) that affected the rate of silica polymerization and its induction period. Agitation did increased silica solubility; however, its effect was negligible in presence of polyvalent cations. Alkalization of water solution by coagulants particularly sodium hydroxide was found suitable for silica removal during pretreatment. The presence of magnesium in solution played a key role in silica removal mostly by the mechanism of adsorption to the metal hydroxide. The options of inline mixing (high agitation) for 5 to 10 minutes and microfiltration before RO were found suitable for silica pretreatment. During dynamic tests, the most dominant mechanism for salt deposition (mostly CaSO4) was particulate type in high concentration water solution; while crystallization fouling was the prevailing mechanism of deposition (mostly CaCO3 and silica) in low concentration solution. Silica showed significant effect on size and shape of inorganic salt crystals during coprecipitation. Moreover, the presence of common antiscalants promoted silica fouling. This important finding recommends an extra caution while using antiscalants in case feed water contains silica to a level that can attain saturation near membrane during RO process. A model was developed to predict the silica fouling index (SFI) based on the experimental data for induction period of silica polymerization. The model takes into account the effect of polyvalent cations and concentration polarization near membrane during RO process. It provides a conservative basis for predicting the maximum silica deposition in RO process at the normal operating conditions. A generalised correlation, which was developed for determination of the mass transfer coefficient in RO process, incorporated the effect of temperature change that is usually not considered in previous correlations. A correlation for reduction of silica content in feed water, down to a safe limit of 15 ppm for RO process, was also formulated and validated by the experimental results.
68

Triclosan Removal By Nanofiltration From Surface Water

Ogutverici, Abdullah 01 January 2013 (has links) (PDF)
Nowadays, organic pollutants occurring in surface waters have raised substantial concern in public. Triclosan (TCS) is one of the antimicrobial agents which are utilized in both domestic and industrial application. In this study nanofiltration (NF) of TCS in surface water was investigated. Laboratory scale cross-flow device is operated in total recycle mode and DK-NF and DL-NF membranes were used. Kesikk&ouml / pr&uuml / Reservoir (Ankara) water was used as raw water. Effect of natural organic matter (NOM) content of raw water on TCS removal is searched through addition of humic acid (HA) into the raw water as to represent for NOM. Steady state permeate fluxes are monitored throughout the experiments to explore the flux behavior of the membranes. During the experiments, performance of the membranes is assessed by monitoring TCS, as well as other water quality parameters, such as UVA254 and total organic carbon (TOC) in the feed and permeates waters. Results obtained put forward that TCS removal by NF membrane is not as same as reported in the literature. In the literature, membrane removal efficiency is reported as above 90%. However, this study proved that this would be true if and only if one does not considers the adsorption of TCS by the system itself, in the absence of membrane. It is now clear that, because of adsorption of the TCS onto the experimental set up (feed tank, pipings etc.) / the real TCS removal efficiency of the nanofiltration is around 60-70%.
69

Removal of N-nitrosamine by Nanofiltration and Reverse Osmosis Membranes

Miyashita, Yu 09 April 2007 (has links)
The rejections of selected N-nitrosamines by commonly used high-pressure nanofiltration (NF) and reverse osmosis (RO) membranes were quantitatively evaluated using a bench-scale cross-flow filtration apparatus. The selected nitrosamines included N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA) and N-nitrosodiphenylamine (NDPHA). Nitrosamine rejections were evaluated under steady state at elevated feed concentrations, since NDMA rejections were found to be consistent with feed concentrations over three orders of magnitude. The steady-state nitrosamine rejections by NF membranes varied significantly, from 9 to 75%, depending on nitrosamine compounds and tested membranes. For hydrophilic compounds, rejections increased with increasing molecular weight. The nitrosamine rejections by brackish RO membranes reached as high as 97% for higher molecular weight nitrosamines. However, for low molecular weight nitrosamines such as NDMA, rejections as low as 54% were observed. This low level of rejections was attributed to diffusive solute transport being more effective than convective transport. Physicochemical properties such as molecular weight and aqueous diffusivity showed reasonable correlations with nitrosamine permeability constants.
70

Corrosion of carbon steel evaporator under desalination environment

鄭喜祥, Cheng, Hee-cheung. January 1981 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy

Page generated in 0.0973 seconds