• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 44
  • 25
  • 21
  • 12
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Salinity effects on 4D recombinant tetraploid wheat genotypes

Khan, Javed Ahmad January 1996 (has links)
No description available.
12

A study of salt tolerance in Arabidopsis thaliana and Hordeum vulgare

Attumi, Al-Arbe M. January 2007 (has links)
Thesis (Ph.D.) - University of Glasgow, 2007. / Ph.D. thesis submitted to the Division of Biochemistry and Molecular Biology, Biomedical and Life Sciences (IBLS), University of Glasgow, 2007. Includes bibliographical references. Print version also available.
13

Interactions between sodium and potassium in micropropagated potato cultivars differing in salinity tolerance

Al-Hagdow, Moftah Moh. January 1998 (has links)
The response of in vitro-grown Solanum tuberosum L., cvs. Russet Burbank (RB) (salt-sensitive) and Sierra (S) (salt-tolerant) potatoes was investigated when [NaCl] was increased from 0 to 80 mM in the presence of 6, 20, and 30 mM [K] in a Murashige and Skoog (MS) basal medium. The tested growth parameters, Mg and Ca content, and K+/Na + ratios in the laminae and the roots were negatively affected as [NaCl] increased. The salt stress was relatively severe on growth of RB plants whereas the salt-tolerant (S) variety was affected to a lesser extent. There were indications that Na in the plant may promote Na translocation. In both cultivars, 22Na was not distributed equally in all plant parts; the lower lamina accumulated the highest amount (216 and 183 DPM mg -1 FW) followed by stem (197 and 182), petioles (187 and 168), and the upper lamina (149 and 121) for RB and S, respectively. / The salt resistance of S is associated not only with a superior capacity to accumulate high Na+ in the roots for osmotic adjustment, but also with resistance to Na movement to the shoot. / The effect of [K] on plant growth showed two main characteristics. In non-saline media, increasing [K] enhanced growth of S, while RB showed optimum growth when the normal (20 mM) level was present in the MS medium. In saline media, elevating [K] alleviated the growth reduction of RB at low salinity, and S at both low and high salinity. This ameliorative effect of K may be attributed to the suppression of both Na+ uptake, and Na + translocation in the plant.
14

The growth and water relations of a coastal halophyte, Salicornia bigelovii

Weeks, Jon Randall, January 1986 (has links) (PDF)
Thesis (Ph. D. - Molecular and Cellular Biology)--University of Arizona, 1986. / Includes bibliographical references (leaves 97-104).
15

Interactions between sodium and potassium in micropropagated potato cultivars differing in salinity tolerance

Al-Hagdow, Moftah Moh January 1998 (has links)
No description available.
16

Physiological and biochemical responses of short staple cotton (Gossypium hirsutum L.) to salt stress.

Al-Bahrany, Abdulaziz Maatook, 1960- January 1989 (has links)
Three cotton (Gossypium hirsutum L.) germplasms (DP62, 84027, and 84033) were used to investigate the physiology of salt tolerance. Lines 84027 and 84033 were developed from the parental line DP62 and showed superior vigor under varying NaCl conditions (0.5 to 2.0 M) during germination and emergence. Proline levels increased in the leaves of all germplasms in response to increasing salinity. Varietal differences in proline levels did not reflect their variation in salt tolerance. Several physiological characteristics were also evaluated under non-saline condition in the greenhouse. There were no significant differences among germplasm sources for all parameters measured. However, salinity reduced transpiration rate, increased leaf diffusive resistance and leaf temperature for all lines. Ribosomal-RNA levels in all germplasms were evaluated after seeds were stressed for 24 hrs in various concentrations of NaCl and then germinated under normal conditions for 72 hrs. Ribosomal-RNA levels were inversely related to salt concentrations. Line 84033 followed by line 84027 had highest ribosomal-RNA content than the parental line DP62 when averaged over the four salt concentrations. Sodium content (ppm/g FW) and Cl⁻ content (ppm/g FW) were evaluated in microsomal and cell walls fractions as well as a cytoplasmic fraction which consisted of vacuoles, mitochondria, and plastids. The Cl⁻ ion exhibited a greater consistency in a concentration shift from one fraction to another as a function of time than did the Na⁺ ion. As a result, there may be a correlation between the drop in ribosomal-RNA and the amount of Cl⁻ in the microsomal fraction. Other parameters measured in the germinating seed were soluble protein (globulin), insoluble proteins (prolamin and glutelin) and fiber percentage. Variations within the germplasms were shown to exist. This study shows that even among lines that have been selected for salt tolerance from a single variety, the possibility exists that each of these lines may have a different mechanism to cope with salt stress.
17

The growth and water relations of a coastal halophyte, Salicornia bigelovii

Weeks, Jon Randall,1949- January 1986 (has links)
The succulent, annual euhalophyte, Salicornia bigelovii was grown in 1, 10, 35, 45 and 60 ppt Instant Ocean. This range represents approximately 1/35 to nearly twice the salinity of seawater. The plants in the 4 highest salinities had common final dry weights and seed yields of about 60 and 11 g, respectively, while the 1 ppt plants had 28 and nearly 5 g, respectively. The water relations data reflected the growth and seed production of the plants. The plants in the 4 higher salinities had water potentials sufficient to generate large import gradients and osmotic potentials which contributed to substantial turgors. The 1 ppt plants had a gradient like the rest, but a very low turgor of 0.11 MPa which was barely 23% of that of the lowest of the other treatments. Higher salinities resulted in slightly greater organic and inorganic osmotica contents. Overall, these results suggest a relatively fixed genetic response to a wide range of salinities, as well as an inability to function well at very low salinities. No plant grown at 0 ppt was ever able to reproduce. Therefore, this plant is an obligate halophyte. Experiments in the plant's native coastal estuary indicated meristem water potentials fluctuate with the tides, although they remain about 1.5 MPa below the corresponding soil water potentials. The plants occupy a discrete elevational range throughout the estuary, spending about 1/3 of their daylight hours submerged, and apparently never see dryness. Phenotype differences in the estuary suggest that, within the habitat, pacing and consequent resource domination may be important parameters affecting plant size and possibly fitness. Nitrogen, which is characteristically rare in this and other estuaries, may be critical in this regard. The plants produce large quantities of glycine-betaine, which may be for simultaneous osmoticum use and nitrogen storage. Most roots occur in the first 3 inches of soil. A mechanism is proposed, based on highly efficient compartmentation at the cellular level and the shuttling of organic osmoticum across the tonoplast, by which the tidally based cyclical water potentials could be explained.
18

SELECTION AND CHARACTERIZATION OF SALT TOLERANT CARROT CELLS.

Simons, Robert Alten. January 1983 (has links)
No description available.
19

Biochemical and functional study of a putative Lambda class glutathione-S-transferase gene in the wild soybean.

January 2014 (has links)
我們在大豆的耐鹽候選基因中進行了篩選和調查,確定了一個穀胱甘肽-S -轉移酶(Glutathion-S-transferase )基因( GmGSTL1 )具抗鹽特性,其表達量也跟隨鹽處理上調。系統發育分析表明,GmGSTL1 屬於LAMBDA 類,文獻對這類蛋白功能的記載甚少。我們在異源系統,包括煙草BY- 2 細胞和擬南芥,測試其保護細胞/植物對鹽脅迫的功能。結果表示GmGSTL1 轉基因細胞的活性氧積累比對照顯著降低,存活率也有所改善。同樣,轉基因擬南芥在鹽處理壓力下的症狀也得以緩解。為了進一步剖析GmGSTL1 的保護機制,我們在大豆葉片中提取多元酚,並發現兩個候選黃酮(槲皮素,山奈酚)與GmGSTL1 起相互作用。槲皮素的外源性應用同樣可以緩解細胞/植物在鹽脅迫下的症狀,表示槲皮素在功能上與GmGSTL1 相約。 / In a survey of candidate genes located in the salinity tolerance locus of soybean, we identified a putative glutathione-S-transferase (GST) gene (GmGSTL1) which was up-regulated in response to salt treatment. Phylogenetic analyses revealed that this putative GST belongs to the Lambda class, a plant-specific group with unknown functions. We expressed GmGSTL1 in heterologous systems, including tobacco BY-2 cells and Arabidopsis thaliana, to test its ability to protect cell/plant against salinity stress. Compare to the wild type control, we observed a marked reduction of ROS accumulation in transgenic cells under salt treatment, and their survival rate was also improved. Similarly, expression of GmGST1 in transgenic A. thaliana also alleviated stress symptoms under salt treatment. To further address the possible protective mechanisms of GmGSTL1, we identified two candidate flavonoid interactants (quercetin and kaemferol) of the GmGSTL1 protein from soybean leaf extract. Exogenous application of quercetin could reduce salinity-induced ROS accumulation in BY-2 cells and leaf chlorosis in A. thaliana. / Detailed summary in vernacular field only. / Chan, Ching. / Thesis (Ph.D.) Chinese University of Hong Kong, 2014. / Includes bibliographical references (leaves 80-104). / Abstracts also in Chinese.
20

Development of in vitro bioassays for determination of salinity tolerance in potato (Solanum spp.)

Zhang, Yanling, 1955- January 1998 (has links)
Salinity problems seriously affect agricultural production by reducing crop yield and arable land. The evaluation of potato genotypes (Solanum spp.) for their salinity (NaCl) tolerance in conventional field trials is time consuming and labour intensive. The results are often confounded by many field and environmental variations. In vitro bioassays can overcome some of these difficulties by providing faster, more convenient and dependable methods for screening and selection of salt tolerant potato genotypes. The objective of this research was to develop in vitro bioassay methods for screening and selection of salt tolerant potato. Under in vitro NaCl stress conditions, seed germination, early seedling growth, and single-node cutting bioassays were used to evaluate salinity tolerance. The selected genotypes were further tested with three in vitro bioassays (single-node cuttings, root tip segments, and microtuberization). The rankings of potato cultivar salinity tolerance were similar in these bioassays. The single-node cutting bioassay was recommended because it was simpler to perform than the root tip segment and microtuberization bioassays and did not exclude certain genotypes as did the microtuberization bioassay. The in vitro bioassay rankings were compared with yield ranking in field lysimeters. In both the in vitro and in vivo saline stress experiments, cvs. Kennebec and Russet Burbank were more salt tolerant than Norland. The tubers and microtubers harvested from previous experiments were tested in the greenhouse to investigate salinity carry-over effect for seed tuber production. There was no apparent residual carry-over effect found. Microtuber yield increase in the presence of low NaCl concentration was induced primarily by specific ion (Na+), and not osmotic effects. This research clearly indicated that in vitro bioassays are relatively simple, rapid, convenient, repeatable, and agree with the field lysimeter results. They can be used to substitute for f

Page generated in 0.1149 seconds