• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L'expérience Sample Analysis at Mars (SAM) : Analyse in situ de molécules organiques dans le sol martien / Sample Analysis at Mars (SAM) experiment : in situ analysis of organic molecules on the Martian soil

Belmahdi, Imène 06 July 2017 (has links)
L’expérience SAM de la mission Mars Science Laboratory (MSL) a pour objectif de rechercher de la MO via l’utilisation des techniques EGA/CPG-SM. Pour améliorer la détection de MO, l’instrument SAM incorpore un laboratoire de chimie humide, une expérience de pyrolyse et des pièges adsorbants. L’utilisation de ces outils analytiques a soulevé de nouvelles problématiques concernant la compréhension de l’instrument analytique et sur l’interprétation des résultats obtenus. C’est dans ce cadre qu’intervient cette thèse. Dans un premier temps, nous avons défini l’impact lors des analyses des adsorbants de polymère de Tenax® contenus dans les pièges adsorbants de SAM. Nous avons également déterminé l’incidence de la durée conditionnement, des réactifs de dérivatisation et des perchlorates sur le Tenax®. Nous avons listé les sous-produits de la décomposition du Tenax® pur et mélangé aux réactifs de dérivatisation ou aux perchlorates. Nous montrons que l’agent de dérivatisation, le MTBSTFA, intensifie l’altération du Tenax®, que l’ajout du DMF au MTBSTFA réduit l’impact du MTBSTFA et que les sous-produits de décomposition des perchlorates accentuent la propagation de la dégradation du Tenax®. Dans un second temps, nous nous sommes intéressés à l’influence de la nontronite et des perchlorates sur la pyrolyse des composés organiques de familles chimiques variés susceptibles d’être présents sur Mars à savoir l’alanine, le phénanthrène et l’acide phtalique. Nous constatons que la nontronite de par sa nature acide (acide de Lewis et acide de Brönsted) catalyse certaines réactions impliquant la matière organique : la MO adsorbée sur la nontronite est majoritairement convertie en CO2 lors de la pyrolyse et la décarboxylation et la chloration de la matière organique sont favorisées. / The purpose of SAM experiment on board Mars Science Laboratory (MSL) rover is to detect OM through the usage of EGA/GC-MS techniques. To improve the detection of OM, SAM experiment incorporates a wet chemistry laboratory, a pyrolysis experiment and adsorbent traps. The utilization of these analytical tools raises new issues about the understanding of analytical instrument and the interpretation of the results obtained. It is within this framework that this thesis comes in. Initially, we have defined the impact of polymer adsorbents i.e. Tenax® contain on SAM trap during analysis. We also have determined the effect of conditioning duration, of derivatization reagents and of perchlorates on Tenax®. We have shown that the derivatization agent MTBSTFA intensify Tenax® degradation, that adding DMF to MTBSTFA reduce the impact of MTBSTFA on Tenax® and that perchlorates by-products accentuate the propagation of Tenax® degradation. Then, we get interested about the influence of nontronite and perchlorates in the pyrolysis of organic compounds from various chemical classes that may be present on Mars like alanine, phthalic acid and phenanthrene. We have noticed that the nontronite by its acidity (Lewis et Brönsted acid sites) catalyse some reactions involving OM: the organic matter adsorbed on the nontronite is mostly converted into CO2 during pyrolysis and the decarboxylation and the chlorination of OM is catalysed by the clay.
2

Etude de la composition de la surface de Mars : recherche de molécules organiques par analyse physico-chimique in situ avec l’instrument SAM de la mission Mars Science Laboratory / Study of the composition of the Mars' surface : search for organic molecules with in situ physicochemical analysis with the SAM experiment of the Mars Science Laboratory mission

Millan, Maëva 01 December 2016 (has links)
La recherche de molécules organiques à la surface de Mars est l’un des enjeux majeurs pour caractériser son habitabilité passée et/ou présente. C’est l’un des objectifs de la mission spatiale Mars Science Laboratory (MSL) et en particulier de l’instrument Sample Analysis at Mars (SAM) à bord du robot Curiosity. Cette thèse s’inscrit dans l’aide au traitement et l’interprétation des données de SAM, en vue de détecter et d’effectuer l’inventaire des molécules organiques à la surface de Mars. Ces travaux portent en premier lieu sur les performances analytiques du chromatographe en phase gazeuse (CPG) de SAM et sur l’identification des molécules organiques dans les échantillons solides martiens analysés. A cette fin, j’ai étudié les performances de la chaine d’injection et de séparation du CPG de SAM dans les conditions opératoires de vol reproduites en laboratoire. J’ai également créé une base de données des temps de rétention de molécules présentes, et potentiellement présentes sur Mars, qui sert de référence pour le traitement des données de vol. Ces données ont permis d’identifier des molécules organiques dans les échantillons solides martiens et d’expliquer pourquoi certaines d’entre elles, supposées présentes, ne sont pas détectées. La deuxième partie de l’étude est focalisée sur l’impact des minéraux oxychlorés sur les molécules organiques, lors de la pyrolyse. Pour ce faire, j’ai développé une approche systématique d’étude de la pyrolyse de molécules organiques en présence de minéraux oxydants, ayant tous deux une forte probabilité de se trouver à la surface de Mars. J’ai ainsi pu étudier l’évolution et/ou destruction des molécules organiques, déterminer celles pouvant être à l’origine des composés chlorés détectés sur Mars, évaluer l’impact de la concentration en minéraux oxychlorés et celui du paramètre de température de pyrolyse. Les résultats indiquent que le nombre, la nature, et les abondances relatives des composés formés au cours de la pyrolyse, dépendent de la nature des phases minérales et organiques, de la concentration en minéraux oxychlorés et de la température de pyrolyse. / The search for organic molecules at the Mars’ surface is of primary interest to understand its past and/or present habitability. It is one among the main goals of the Mars Science Laboratory (MSL) space mission and especially of the Sample Analysis at Mars (SAM) experiment onboard the Curiosity rover. This thesis deals with the support to the SAM data treatment and interpretation, which aims to detect and inventory the organic molecules at the Mars’ surface. The first part of this work focuses on the analytical capabilities of the SAM gas chromatograph (GC) and the identification of the organics in the solid samples analysed on Mars with the flight model. To do so, I studied the analytical chain from injection to separation of the SAM GC in the flight operating conditions reproduced in the laboratory. I also created a library of retention times for molecules present or potentially present on Mars, and used as a reference library to treat the flight data. These data allowed to identify the organics in the martian solid samples, and to explain why a few molecules, expected to be present, are not detected. The second part of the thesis focuses on the impact of oxychlorine phases on the organics, during the pyrolysis process. With this aim, I developed a systematic approach to study the pyrolysis of organic molecules on the presence of oxidant minerals that have a high probability of presence at the Mars surface.The evolution and/or destruction of the organics was evaluated. We also looked for the organic and inorganic compounds that can be the precursors of the chlorohydrocarbons detected on Mars with SAM. Finally, we evaluated the influence of the oxychlorines concentration and of the pyrolysis temperature parameter. The results show that the number, the nature and the relative abundances of the compounds formed during the pyrolysis, depend on the nature of the organic and inorganic phases, of the concentration of the oxychlorines phases and of the pyrolysis temperature.

Page generated in 0.0881 seconds