Spelling suggestions: "subject:"aan andreas"" "subject:"aan ndreas""
41 |
Earthquakes to mountains : fault behavior of the San Andreas Fault and active tectonics of the Chinese Tian Shan /Scharer, Katherine Maxine, January 2005 (has links)
Thesis (Ph. D.)--University of Oregon, 2005. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 173-185). Also available for download via the World Wide Web; free to University of Oregon users.
|
42 |
Digital blackface the repackaging of the black masculine image /Green, Joshua Lumpkin. January 2006 (has links)
Thesis (M.A.)--Miami University, Dept. of Communication, 2006. / Title from first page of PDF document. Includes bibliographical references (p. 83-86).
|
43 |
Ακουστική μελέτη του Ιερού Ναού του Αγίου Ανδρέα ΠατρώνΠαππάς, Αργύριος 09 January 2012 (has links)
Η εργασία αυτή έχει ως αντικείμενο την ανάλυση της ακουστικής και ηλεκτρακουστικής εγκατάστασης του Καθολικού Ιερού Ναού του Αγίου Ανδρέα στην Πάτρα. Σκοπός της εργασίας είναι η εξαγωγή συμπερασμάτων για την καταλληλότητα της αίθουσας για μουσική και ομιλία μέσω της μελέτης ακουστικών και ηλεκτρακουστικών παραμέτρων. Για αυτό το λόγο έγινε εξομοίωση της ακουστικής συμπεριφοράς του χώρου και ανάλυση της, μέσω του προγράμματος CΑΤΤ Acoustic, με σκοπό την ακριβή πρόβλεψη αυτής καθώς και τη βελτίωση της ακουστικής. Στη συνέχεια έγινε εξομοίωση της ηλεκτρακουστικής συμπεριφοράς του χώρου με σκοπό τον ακριβή προσδιορισμό της ηλεκτρακουστικής συμπεριφοράς του χώρου βάση της υπάρχουσας ηλεκτρακουστικής εγκατάστασης. / This diploma thesis has been done in the department of Electrical Engineering and Computer Science in University of Patras and the subject deals with the design of the architectural plans of a museum and the acoustic study of the Catholic Church of San Andreas in Patras. Specifically, it presents an acoustic and electroacoustic study of this Church. The real purpose of this thesis is to comment on the results of the acoustic parameters such as Rapid Speech Transmission Index (RASTI) in order to come to conclusion about speech and music suitability of this close area. For this reason, the designing program Autocad and the simulating program Catt Acoustic v7.2 have been used. The acoustic results in acoustic study have been compared with those in electroacoustic study. This comparison gives an efficient conclusion about speech intelligibility of this Catholic Church.
|
44 |
Fault Interaction within Restraining Bend Fault SystemsStern, Aviel Rachel 07 November 2016 (has links)
Numerical simulations of a 15° restraining bend analog claybox experiment include considering the fault geometry, rheology, and boundary conditions. The numerical models show that a growing fault from an analog experiment propagates at depth rather than at the surface and is exposed in later stages of the experiment, and that the wet kaolin clay from the analog experiment is partially decoupled from the steel plate. The numerical models provide the stresses to predict accurate fault growth from the analog experiment and provide the evolution of external work within the fault system. The external work from the numerical models decrease as faults continue to grow, which agrees with the continuously increasing kinematic efficiency within the analog experiment.
Three-dimensional mechanical models are used to simulate the southern San Andreas fault. These models show that incorporating fault interaction, time since last earthquake rupture, and nearby earthquakes affects the stress state along a fault. Absolute shear tractions are calculated by multiplying time since last earthquake rupture with the simulated interseismic stressing rates for each fault strand. From our multi-cycle model, fault interaction affects local normal stressing rates so that the stresses are not relieved in between earthquakes. We provide our absolute shear tractions and scale our multi-cycle normal stressing rates to be near to failure so that dynamic rupture modelers from University of California, Riverside use our results to simulate earthquake propagation for the complex fault region of the San Gorgonio Pass.
|
45 |
Analysis of Model-driven vs. Data-driven Approaches to Engaging Student Learning in Introductory Geoscience LaboratoriesLukes, Laura 13 May 2004 (has links)
Increasingly, teachers are encouraged to use data resources in their classrooms, which are becoming more widely available on the web through organizations such as Digital Library for Earth System Education, National Science Digital Library, Project Kaleidoscope, and the National Science Teachers Association. As "real" data becomes readily accessible, studies are needed to assess and describe how to effectively use data to convey both content material and the nature of scientific inquiry and discovery. In this study, we created two introductory undergraduate physical geology lab modules for calculating plate motion. One engages students with a model-driven approach using contrived data. Students are taught a descriptive model and work with a set of contrived data that supports the model. The other lab exercise uses a data-driven approach with real data. Students are given the real data and are asked to make sense of it. They must use the data to create a descriptive model. Student content knowledge and understanding of the nature of science were assessed in a pretest-posttest experimental design using a survey containing 11 Likert-like scale questions covering the nature of science and 9 modified true/false format questions covering content knowledge. Survey results indicated that students gained content knowledge and increased their understanding of the nature of science with both approaches. Lab observations and written interviews indicate these gains resulted from students experiencing different pedagogical approaches used in each of the two labs. / Master of Science
|
46 |
Exploration and application of post-infrared high-temperature infrared stimulated luminescence dating techniques: investigation of marine terrace deposits along the northern San Andreas FaultRoozeboom, Jennifer Elizabeth January 1900 (has links)
Master of Science / Geology / Joel Q. Spencer / Optically stimulated luminescence (OSL) dating is a relatively new dating method, tangibly introduced in 1985 when Huntley et al. demonstrated the ability to use light-sensitive traps to measure radiation exposure and determine the age of sediment. Quartz and feldspar grains are commonly used for the method, with quartz receiving significantly more attention than feldspars until the past decade. Recent research has improved the practicality of using feldspars as a reliable dosimeter –an appealing notion as the intrinsic properties of feldspars allow them to date older sediment that may lie beyond the reliable range of quartz dosimetry. This work explores and utilizes the contemporary feldspar technique termed post-infrared, high-temperature infrared stimulated luminescence (pIRIR) dating to add to the existing knowledge base of this method, particularly by testing different preheat and measurement temperature combinations. Analysis of the each pIRIR method indicates that the pIRIR signal stimulated at 225°C is more appropriate for dating than the pIRIR signal stimulated at 290°C. Techniques and protocols developed in this work are done so via their application to a marine terrace that is displaced by the San Andreas Fault. Corals from the terrace along the Pacific plate, dated with U-series by Muhs et al. (2002), offer an age estimate. Comparison of the pIRIR ages to the U-series ages yield an underestimation, suggesting the pIRIR method may be more useful as a means of correlating terraces across the fault, than for providing ages of terrace formation.
|
47 |
FAULT EVOLUTION IN THE NORTHWEST LITTLE SAN BERNARDINO MOUNTAINS, SOUTHERN CALIFORNIA: A REFLECTION OF TECTONIC LINKAGE BETWEEN THE SAN ANDREAS FAULT AND THE EASTERN CALIFORNIA SHEAR ZONEHislop, Ann 01 January 2019 (has links)
The Little San Bernardino Mountains (LSBM) Fault Set are N-S dextral faults, east of the restraining bend of the San Andreas Fault (SAF) in southern California, that may form a tectonic linkage between the SAF and the Eastern California Shear Zone. The NW LSBM are a complexly deformed structural domain characterized by the young N-S dextral faults and older NW-oriented Dillon Shear Zone faults. Before the 1992 Joshua Tree (Mw 6.1) and Landers (Mw 7.3) earthquakes, the rugged NW LSBM was the subject of few geologic studies. This bedrock mapping study has further delineated the geometry, distribution, and relative chronology of brittle structures. A 2015 NCALM award of 51 km2 of lidar imagery on Eureka Peak Fault was used to correct fault locations.
Bedrock mapping in the epicentral areas of the 1992 Joshua Tree earthquake on Eureka Peak Fault and Landers aftershocks (Mw 5.7, 5.8) focused on the brittle structures of the evolving fault systems and potential connections with historic seismicity. The N-S dextral fault offsets from west to east are; Long Canyon (470 m), Wide Canyon (~150- 340 m), Eureka Peak (~ 225 m), California Riding Trail (850-965 m) and Deerhorn (105 m) faults with a cumulative offset of approximately 2 km. Dolomitic marble, clinopyroxene-hornblende skarn, garnet-epidote skarn and gabbro-diorite intruded by monzogranite are key lithologies used in determining offsets. Joshua Tree Fault, defined by seismicity by Kaven and Pollard (2013) is supported by additional mapped fault data. A “new” fault (Black Rock Canyon) links Wide Canyon and northern Eureka Peak faults. The distribution of aftershock seismicity plotted by depth and latitude along the N-S faults, a prominent broad seismicity trend and bedrock mapping are all consistent with interpreting the N-S faults as an incipient set of faults developing upward from a deeper through-going crustal shear zone. The seismicity since the onset of the Joshua Tree- Landers earthquake sequence on April 23, 1992, forms two distinct trends. Temporally these two trends occurred in sequence; first a N-propagating trend April 23- mid-June along Joshua Tree Fault from the Joshua Tree earthquake epicenter to north of the Pinto Mountain Fault, and secondly a prominent SE trend of Landers aftershocks (including Mw 5.7, 5.8) June 28 onwards, from the Landers earthquake epicenter, along Eureka Peak Fault to the SAF.
AFT and (U-Th)/He thermochronology indicate an abrupt boundary on Long Canyon Fault between rapid uplift within ~ 12 km of the SAF and slower uplift more than 12 km north. This boundary is projected along the Dillon Shear Zone structural grain to the 1992 Joshua Tree earthquake epicenter on southern Eureka Peak Fault, dividing the N-striking faults into northern and southern domains. The 14.7 km hypocentral depth of the Joshua Tree earthquake coincides roughly with the depth of the NE dipping SAF intersection with Eureka Peak Fault, forming a hypothesized flower structure which is consistent with rapid uplift of the LSBM escarpment near the SAF.
The LSBM Fault Set may be initiated by the upward migration of a through-going mid-crustal break and eastern migration of the current SAF trace bypassing the Big Bend slip impediment. Eureka Peak Fault with a slip rate of 10-20 mm/yr, is the proposed structure tectonically linking the SAF and the Eastern California Shear Zone.
|
48 |
The development of a curriculum for a high school course in computer literacyGreenfield, Robert Wayne 01 January 1997 (has links)
No description available.
|
49 |
Earthquakes in complex fault settings: Examples from the Oregon Cascades, Eastern California Shear Zone, and San Andreas faultVadman, Michael John 22 June 2023 (has links)
The surface expression of upper crustal deformation varies widely based on geologic settings. Normal faults within an intra-arc basin, strike-slip faulting within a wide shear zone, and creeping fault behavior all manifest differently and require a variety of techniques for analysis.
In this dissertation I studied three different actively deforming regions across a variety of geologic settings. First, I explored the drivers of extension within the La Pine graben in the Oregon Cascades. I mapped >20 new Quaternary faults and conducted paleoseismic trenching, where I found evidence for a mid-late Holocene earthquake on the Twin Lakes maar fault. I suggest that tectonics and not volcanism is responsible for the most recent deformation in the region based on fault geometries and earthquake timings, although more research is needed to tease out finer temporal and genetic relationships between tectonics and volcanism regionally. Second, I investigated the rupture pattern and earthquake history of the Calico fault system in the Eastern California Shear Zone. We mapped ~18 km of continuous rupture, with a mean offset of 2.3 m based on 39 field measurements. We also found evidence for two earthquakes, 0.5 - 1.7 ka and 5.5 - 6.6 ka through paleoseismic trenching. We develop a number of different multifault rupture scenarios using our rupture mapping and rupture scaling relationships to conduct Coulomb stress change modeling for the most recent earthquake on the Calico fault system. We find that the most recent event places regions adjacent to the fault in a stress shadow and may have both delayed the historic Landers and Hector Mine ruptures and prevented triggering of the Calico fault system during those events. Last, I studied the spatial distribution of the southern transition zone of the creeping section of the San Andreas fault at Parkfield, CA to determine if it shifted in response to the M6 2004 Parkfield earthquake. I used an Iterative Closest Point algorithm to find the displacement between two lidar datasets acquired 13 years apart. I compared creep rates measured before the 2004 earthquake to creep rates calculated from my lidar displacement results and found that there is not a discernible change in the overall pattern or distribution of creep as a response to the 2004 earthquake. Peaks within the lidar displacement results indicate complexity in the geometry of fault locking. / Doctor of Philosophy / Fault behavior varies widely across different regions, depending on the type of fault and local geology.
In this dissertation I examine three regions with different mechanisms controlling deformation within them. First, I study the relationship between volcanic and tectonic induced faulting in the La Pine graben in the Oregon Cascades. While volcanoes and tectonics can both produce faults within a region, the surface expression of those faults changes depending on the underlying driver. I map > 20 new faults in the La Pine graben. I also conduct paleoseismic trenching on one of the newly identified faults, the Twin Lakes maar fault, and find that its most recent rupture occurred < 7.6 ka. I conclude that tectonism is the dominant driver of faulting within the La Pine graben based on the fault geometries and timing between identified regional earthquakes and volcanism. Second, I explore recent rupture on the Calico fault system in the Eastern California Shear Zone, which is a wide region across eastern California where deformation is distributed among many faults. Faulting in this region is complex, with some earthquakes occurring on multiple connected faults. I conducted a paleoseismic survey to determine the timing of the most recent earthquake(s) on the Calico fault system. This trenching effort found evidence for 1-2 earthquakes, the most recent occurring 0.5 – 1.7 ka. I use the rupture mapping and earthquake timing to develop a number of various rupture scenarios. I use these scenarios as inputs for computer modeling to explore the regional stress changes from these events and find that they reduce the overall stress in the area, elongating the amount of time between regional earthquakes.
Last, I examine how creeping fault behavior on the San Andreas fault near Parkfield, CA changes as a response to an earthquake. Creeping behavior is where the two sides of a fault are continuously moving past one another. I examine the spatial distribution of where the San Andreas fault transitions from creeping to locked behavior by differencing two high-resolution lidar topographic datasets taken after the M6 2004 Parkfield earthquake. I compare my displacement results to pre-2004 datasets and conclude that the transition zone did not appreciably change as a result of the earthquake.
|
50 |
Determination of Heterogeneity by High-Resolution Seismic Reservoir Characterization in the Heavy Oil Temblor Reservoir of Coalinga Field, CaliforniaMahapatra, Sailendra Nath 12 December 2005 (has links)
The research focuses on analysis and subsurface imaging of siliciclastics rocks on steam-affected 3D poststack seismic data, merged from different vintages, from the Temblor Formation in the Coalinga heavy oil reservoir in the San Joaquin basin, California. The objective was identification, delineation, and demarcation of reservoir heterogeneities by seismostratigraphic and seismogeomorphic analysis.
The proximity of the San Andreas Transforms greatly controlled basin evolution and caused substantial reservoir heterogeneity by changing the depositional environment from shallow marine to near-shore fluvial. Moreover, two unconformities dissect the reservoir interval.
The seismic dataset exhibits erratic, distorted reflection strengths and amplitudes caused by steam-injection-aided production. A petrophysical analysis based on Gassmann fluid substitution suggests a 27% P-wave velocity decrease in steam-saturated intervals. Seismic to well log ties were problematic and vexing due to the resulting statics, wavelet changes, and line mismatches. Mapping and flattening on a deeper horizon, however, allowed mapping of the internal unconformities and well ties which were crucial for seismostratigraphic sequence identification.
Visualization of seismic attributes brought out stratification patterns and two distinct, laterally and vertically extensive, porous, and interconnected facies tracts interpreted as incised valley fills and tidal-to-subtidal deposits as evidenced by bright, steam related amplitudes.
Seismic attribute analysis, Geobody Visualization and Interpretation, and structure and isochron maps brought out two prominent channel-systems, recut and restacked in the central part of the area. These deposits were identified on seismic data and correlated to high-gamma coarsening-upward sands on logs and cores. The deeper one, shifting towards SSE with depth, lies between the Base Temblor and Buttonbed unconformities both in the southwestern and northwestern parts of the study area and is scattered in the western-central portion. The shallower one originates in southwestern corner below the Top Temblor unconformity shifts towards ESE-SE with depth, and runs nearly parallel to the Top Temblor unconformity. It cuts across the Valv unconformity in central part creating a channel incision, and follows the Buttonbed unconformity towards the north.
The investigation segmented the reservoir into channels, non-channel bearing, and unconformity-bounded subunits which will allow the operator to improve steam injection and optimize placement of oil producing infill wells. / Ph. D.
|
Page generated in 0.059 seconds