• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 12
  • 12
  • 11
  • 10
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The life history of selected coastal foredune species of South Africa /

Knevel, Irma Cornelia. January 2001 (has links)
Thesis (Ph. D. (Botany))--Rhodes University, 2002.
2

Experimental assessment of a gateway invader : how yellow bush lupine (Lupinus arboreus) facilitates the loss of native dune vegetation /

Cipra, Jane Ashdown. January 1900 (has links)
Thesis (M.A.)--Humboldt State University, 2006. / Includes bibliographical references (leaves 36-38). Also available via Humboldt Digital Scholar.
3

Factors affecting the community structure of bacteria, arbuscular mycorrhizal fungi and nematodes in the soil of the machair agricultural system

Vink, Stefanie Nicoline January 2010 (has links)
Machair is a habitat found predominantly in coastal areas of the north–west of Scotland and is characterised by a low-input, rotational arable system interspersed with semi-natural grasslands. Land management is an essential part of the machair system as both intensification and abandonment threaten its future. Little is known about this system in terms of its below ground communities. A survey was conducted over a three season, two year period for molecular determination of bacterial, AM fungal and nematode community structure. Cropped, fallow and undisturbed grassland were sampled; soil and roots associated with two commonly occurring species and composite soil samples were collected. In addition the effect of edaphic factors and vegetation composition on soil communities was assessed, both in the field and in greenhouse experiments. Results show that although all of the examined factors impacted the community structure of the three soil groups to some degree, the strength of this effect varied between groups. Bacterial communities were mainly affected by temporal factors, particularly year, possibly due to variation in soil moisture content. AM fungal community structure also varied considerably with season, but the mechanisms behind this were less obvious, with both abiotic and plant factors playing a role. AM fungal community structure varied with different plant hosts but also with soil moisture content. In contrast to both bacteria and AM fungi, nematode communities showed a strong response to land use although temporal factors and differences between locations were also observed. Grasslands harboured a distinctly different community structure from cropped and fallow, largely as a result of variation in bacterivores and carnivores. Vegetation composition and soil moisture content were also found to affect nematode community structure. This study has revealed that machair soil communities seem to be highly complex, dynamic and adapted to the changeable conditions that persist.
4

The ecophysiology of selected coastal dune pioneer plants of the Eastern Cape /

Ripley, Bradford Sherman. January 2001 (has links)
Thesis (Ph. D. (Botany))--Rhodes University, 2002.
5

An integrated approach to aspects of coastal dune planning and management along a portion of the Eastern Cape coastal zone

Hellström, Gavin B January 1995 (has links)
Ecological evaluation techniques have been used to classify or evaluate the relative conservation worthiness of a portion of the Eastern Cape coastal zone from Cannon Rocks to Port Alfred. A system-based approach, using a basic GIS, was used to compare three aspects of the coastal zone. Two existing planning documents (EMATEK/s Coastal Vegetation Importance Rating plan and CPA's Cape Coastal Conservation plan) were statistically compared - based primarily on the size and number of the landscape fragments (environmental criteria polygons). The resultant plan, an Intermediate Sensitivity Class map, was further integrated with the biophysical aspect of the coastal zone - coastal dunes. The final map is the product of these overlays to be used as a-working overlay for coastal zone decision-making. This is an Environmental Sensitivity map, which has no particular direct reference to any particular biophysical criteria, which categorizes the coastal zone according to the environmental sensitivity or conservation worthiness of the site. The categories are listed according to a sliding-scale of sensitivity or worthiness. There is, however, it strong association between the final map and the vegetation status of the coastline, as a direct result of the vegetation rating map and indirectly from the perception based coastal conservation plan. The formation of most assessment or evaluation plans are based on the vegetation status of the area. This map can be overlayed over the particular stretch of the coastline which it covers and the particular conservation status noted. There are numerous techniques available for assessment and evaluation each having their own specific merits and advantages. This plan, however, is a first attempt at integrating other specific plans into a single working document for the coastal zone manager.
6

The presence and role of arbuscular mycorrhizal fungi in coastal sand dune systems

Haller, Anjanette H. A January 2000 (has links)
Arbuscular mycorrhizas (AM) are mutually beneficial symbiotic associations between the roots of plants and certain Zygomycetous fungi. The role of AM fungi in coastal sand dunes has been explored in many parts of the world, though little work has been conducted in South African dune systems. This study aimed to investigate the presence and extent of mycorrhizal colonisation of a coastal sand dune in South Africa. The roots of five plant species (Scaevola plumieri, Arctotheca populifolia, Ipomoea pes-caprae, Ehrharta villosa and Chrysanthemoides monilifera) were sampled along a foredune profile at Old Woman's River in the Eastern Cape. These roots were assessed for the percentage mycorrhizal colonisation they supported. Spores extracted from the rhizosphere sand of each plant species were counted and identified to genus level. Results were related to seasonality and the position of the plants along the profile. All plant species were found to be mycorrhizal. Percentage colonisation ranged from 0-92%, depending on plant species and season. Mycorrhizal colonisation was generally highest in the winter months, and especially so in I pes-caprae and E. villosa. The extent of various mycorrhizal structures in root tissue varied between plant species. Spore numbers ranged from 0-48 spores 100g-1 sand with highest numbers occurring in winter. S. plumieri and A. populifolia were associated with greatest spore abundance. Four fungal genera (Glomus, Acaulospora, Scutellospora and Gigaspora) were identified. Distribution of these genera showed seasonal variations between plant species. A bioassay, using Sorghum, was conducted to test the inoculum potentials of sand from the Scaevola hummock and the IpomoealEhrharta dune. Highest percentage colonisation occurred in plants grown in the Scaevola sand, which also had the lowest root and shoot measurements. The bioassay confirmed that AM propagules are present and viable, even in the mobile sand of the foredune. This study showed that mycorrhizal colonisation and spore numbers varied seasonally, but that the extent of this was dependent on plant species. The position of plants along the foredune profile tended to be less important than plant species. It is thought that the growth cycle and rooting system of each plant species determines seasonal cycles and abundance of AM fungi. Variation within fungal populations probably also impacts on this. Knowledge of the presence and distribution of AM fungi in this system paves the way for more detailed studies which need to examine the role of these endophytes in South African sand dunes.
7

The life history of selected coastal foredune species of South Africa

Knevel, Irma Cornelia January 2002 (has links)
South African dune fields are severely threatened by human expansion and in the long run the stabilisation of many dunes will be necessary. The alien grass Ammophila arenaria is the most important drift sand stabiliser at present in South Africa. Although not invasive, the current impact of A. arenaria on the dune systems of South Africa is considerable, and thus the stabilising benefit of the grass seemed to may be outweighed by its negative consequences. It is therefore preferable to use indigenous sand stabilising species. In order to define guidelines for the application of indigenous plants for stabilisation, their autecology should be studied first to enhance the chance of successful stabilisation results. The main aim of the present thesis was to gather information on the life history processes of selected indigenous, sand stabilising foredune species. To investigate the growth of foredune pioneer species, the common pioneer Scaevola plumieri was followed over a three-year period to determine the growth season and leaf phenology. Soil-borne pathogens are known to influence the growth and vegetation dynamics of foredune species. To examine this effect on the South African foredunes the rhizosphere soil and the roots of several species were studied. To test the effect of the nematode fauna on succeeding plant species a transplantation experiment was carried out. The seed stage is the only life-cycle stage that can survive unfavourable conditions. Therefore, the seed ecology of several foredune species was studied extensively to determine the reproductive season, the seed production, the fate of seeds after shedding (germination, seawater dispersal), germination requirements and seed bank strategy. Seeds of the species Arctotheca populifolia, Ipomoea pes-caprae, Myrica cordifolia, and Scaevola plumieri were subjected to germination trials, field observations on seedling survival, and scarification and stratification experiments. This was done to obtain information about the germination requirements and to determine the reproductive season and growth season. The seed bank strategy of the foredune species, as well as the seed bank density, was determined by extensive sampling along the Cape coast. The species S. plumieri thrived under sand accretion situations, which makes it a good candidate for stabilisation purposes. The growth of S. plumieri was seasonal, with the highest leaf production during spring and summer. The stem position on the foredune had a strong effect on the overall performance of S. plumieri , with the stems situated on the landward face of the foredune showing higher leaf and seed production. Theiii nematode survey of soil and roots of several foredune species showed that all plant species featured a specific nematode fauna in the rhizosphere soil and the roots. The specific nematode fauna affected the growth of foreign plant species in the transplantation experiment, resulting in a lower root and/or shoot biomass production. Most of the foredune species produce seeds from spring to late summer. For S. plumieri the position of the stem on the dunes, as well as the predation of unripe seeds affected the number of seeds produced. The highest production was found for the landward faced stems. The S. plumieri seeds were able to float on seawater for at least three months without losing viability, as was observed for seeds of I. pes-caprae. The seeds of M. cordifolia, however, sank after a few days, but their viability was not affected. The rhizome fragments of A. arenaria and S. virginicus floated for 120 days, whereas the fragments of E. villosa sunk after one day. The viability of S. virginicus fragments was affected by the duration in seawater by an increase in sprouting time. The seeds of all species tested germinated readily under controlled conditions, except S. plumieri seeds which required a long lag-phase before germination. In the field the seeds of A. populifolia, I. pes-caprae and S. plumieri germinated, producing many seedlings. Only the seedlings of A. populifolia and S. plumieri survived. Of the species found in the foredunes 57% was represented in the soil seed bank. For most species, the seeds that were found in the seed bank showed viability of at least 40%. Many of the seeds found were older than one year, suggesting a short-term persistent seed bank. The present study is a start in filling the gap in information on dune pioneer and foredune species. The conclusion was that in general all species in the present study were easy to grow under controlled conditions, and thus could be used for stabilisation purposes. When the more rapidly growing pioneer species are planted in combination with succeeding foredune species, a functional and aesthetic ecosystem could be created.
8

A synecological study of the East London coast dune forests

Burns, Michael Edmund Reid January 1987 (has links)
Quantitative community descriptions, based on point quarter sample data, are made for a number of dune forest units along the East London coast. These are supported by multivariate classifications and ordinations which illustrate the inter community variation between the sampled seaward, landward and dune valley sites. Climax valley forest is floristically most characteristic and can be clearly distinguished from the seaward and landward thicket communities which tend to show a degree of similarity. Within-forest community differences are shown to be more significant than variation along the coast. This appears to indicate that climoedaphic gradients established laterally to the coast induce a greater floristic response than the rainfall gradient within the study area. The state of developnent within the dune soil profile and the rate and effect of salt spray deposition are considered to be important factors influencing dune forest succession and are discussed in some detail. An overview of certain other climatic variables as well as the geological features within the study area is also given. A phenology study of the dune forest, scrub-thicket and strand plant cornnunities shows some general patterns of flowering and fruiting phenorhythms. Although much variation was observed, there appears to be a bimodal hyperactive phenophase response which is thought to be related to rainfall or periods of favourable soil moisture conditions. A brief discussion of some of the positive and negative human influences on the coastline is given. This includes a description of the management activities carried out in the area as well as the demands placed on ·the coastal resource.
9

The influence of anthropogenic impacts from development and human activity in and around foredune plant communities along a portion of the KwaZulu-Natal coastline.

Bundy, Simon C. January 2004 (has links)
The impact of development on coastal ecological processes within the coastal zone is often noted as being of ecological concern, due to the suggested destabilization of dune systems as a result of construction activities and post construction impacts such as stormwater disposal, trampling and other artificial influences on, in particular, the plant ecology of the frontal dune systems. Given that the stability of frontal dune systems along the Kwa Zulu Natal north coast is often attributed to the maintenance of vegetation and seral progression on such systems, the identification of changes in dune plant communities that may arise from the influence of proximal or adjacent activities was sought to be identified. Utilising data collected from a number of sites in the Kwa Dukuza Municipal area, the classification and ordination of environmental and botanical species information collated over approximately 6 months was undertaken. The results of this investigation indicate that: Species composition differs in terms of richness and abundance in the three frontal dune vegetation zones sampled. 2 3 4 5 Some species occur in all three zones and others are confined to one zone only. Bearing and the associated influence of wind, the slope and length of the beach, and the steepness ofthe dune face all influence the species composition at any particular site The influence of anthropogenic activities on dune synusia is such that human influence on one species may disrupt associations between species and may result in attenuation or '" reversal of seral movement. Anthropogenic impacts influences species composition at different sites by causing some species to decline abundance or disappear from a site and others to invade or oust established species. In Zone I the species that appears to be most affected by human activity is Gazania rigens, which appears to dominate in sites of high human activity, at the expense of Sporobolus virginicus. In Zone IT under high human activity species such as Cynanchum obtusifolium, Rhoicissus digitata and Sporobolus virginicus dominate, while the woody species Mimusops caffra and Eugenia capensis, as well as the liane Gloriosa superba appear to decline or be ousted from this Zone. In Zone Ill, Asystasia gangetica, is a dominant species where low to moderate human impacts are encountered, while where human impacts are high, species common to Zone I, such as G rigens may become prevalent, ousting A gangetica and grasses such as S virginicus may be ousted by more competitive species such as Stenotaphrum secundatum. It is thus concluded that human activities in and around the frontal dune system may be influential in re-inforcing aeolian impacts on sites with bearings affected by strong prevailing winds. / Thesis (M.Sc.)-University of KwaZulu- Natal,Durban, 2004.
10

Regeneration failure and the Acacia karroo successional pathway in coastal dune forests in KwaZulu-Natal, South Africa.

Boyes, Lauren J. January 2007 (has links)
Monospecific stands of Acacia karroo establish naturally on disturbed coastal dunes in KwaZulu-Natal, South Africa. While the A. karroo successional pathway is successful in rehabilitating mined dunes at the Richards Bay Minerals mining company (RBM), the same pathway has become arrested in the coastal dune forest at Cape Vidal in the Greater St. Lucia Wetland Park. This study examines the efficacy of the A. karroo successional pathway for restoring disturbed coastal dune forests. Dispersal of seeds and successful recruitment of seedlings are essential for habitat restoration. Seed and seedling banks were compared between previously disturbed A. karroo stands and adjacent forest at Cape Vidal. Different seed bank composition and higher seed bank richness in the forest suggest that seed dispersal into A. karroo stands is limited. Protected seed banks in A. karroo stands had increased seedling richness, indicating that dispersal limitation does not fully explain the lack of seedling establishment. At RBM, the seed bank richness of A. karroo stands increased with age since mining. While cumulative species richness of the seed bank of the oldest A. karroo stand at RBM was marginally lower than that at Cape Vidal, successful rehabilitation at RBM is associated with low seedling mortality. Consequently, forest tree species richness is high at RBM in the A. karroo stands and is converging on natural forest richness and composition. Although seed dispersal is reduced, it does not totally limit establishment of forest tree species in A. karroo stands at Cape Vidal, which implicates a post-establishment factor. Soil fertility potentially reduces seed germination and seedling growth. Soil nutrients in A. karroo stands at Cape Vidal were similar to those in the adjacent forest, and total nitrogen levels in A. karroo stands at Cape Vidal were higher than at RBM. Thus, soil conditions were unlikely to be limiting tree regeneration in A. karroo stands. Total nitrogen accumulated in the oldest stand at RBM at a rate of 10.0 g.m2.y(1 and a similarly rapid rate occurred at Cape Vidal. Therefore the A. karroo stands were not nitrogen limited. Nitrogen supplementation experiments at Cape Vidal demonstrated that a range of forest tree species establish in A. karroo stands regardless of nitrogen level, but there is low survival of seedlings. Thus, nitrogen availability is not arresting succession at Cape Vidal. Herbivory can also inhibit seedling recruitment. Selective feeding may enhance the persistence of species with defences against herbivory, such as A. karroo, ultimately altering the tree community composition. Browsing and trampling by large mammalian herbivores in A. karroo stands at Cape Vidal decreased survival and growth of forest tree seedlings. Large herbivores such as kudu, waterbuck, bushbuck and red duiker preferentially used the A. karroo stands as they offer abundant food and their topography allowed easy movement. This topdown pressure reduced recruitment, growth, and survival of seedlings of undefended species. Few wild herbivores occur at RBM, which allowed succession to proceed unhindered, ultimately restoring coastal dune forest at this site. Despite successful rehabilitation of coastal dune forest on mined dunes at RBM, limited seed dispersal and high levels of herb ivory have arrested succession at Cape Vidal. Thus, the A. karroo successional pathway must be implemented only after careful consideration of site-specific factors such as distance to a source of propagules and the intensity of herbivory in the system. In areas where herbivore densities are high, management interventions focusing on reducing herb ivory and encouraging visitation by seed dispersers are necessary for the successful use of this successional pathway. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.

Page generated in 0.1123 seconds